[1]周 璇,张学俊,杨 涛.广义张量型Hom-李代数Kegel定理[J].南京师范大学学报(自然科学版),2017,40(04):7.[doi:10.3969/j.issn.1001-4616.2017.04.002]
 Zhou Xuan,Zhang Xuejun,Yang Tao.Kegel’s Theorem for Generalized Monoidal Hom-Lie Algebras[J].Journal of Nanjing Normal University(Natural Science Edition),2017,40(04):7.[doi:10.3969/j.issn.1001-4616.2017.04.002]
点击复制

广义张量型Hom-李代数Kegel定理()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第40卷
期数:
2017年04期
页码:
7
栏目:
·数学与计算机科学·
出版日期:
2017-12-30

文章信息/Info

Title:
Kegel’s Theorem for Generalized Monoidal Hom-Lie Algebras
文章编号:
1001-4616(2017)04-0007-05
作者:
周 璇1张学俊1杨 涛2
(1.江苏第二师范学院数学与信息技术学院,江苏 南京 210013)(2.南京农业大学数学系,江苏 南京 210095)
Author(s):
Zhou Xuan1Zhang Xuejun1Yang Tao2
(1.School of Mathematics and Information Technology,Jiangsu Second Normal University,Nanjing 210013,China)(2.Department of Mathematics,Nanjing Agricultural University,Nanjing 210095,China)
关键词:
张量型余三角Hom-双代数左(HαH)-Hom-余模代数广义张量型Hom-李代数Kegel定理
Keywords:
monoidal cotriangular Hom-bialgebrasleft(HαH)-Hom-comodule algebrasgeneralized monoidal Hom-Lie algebrasKegel’s theorem
分类号:
O153.1
DOI:
10.3969/j.issn.1001-4616.2017.04.002
文献标志码:
A
摘要:
设(H,αH)为张量型余三角Hom-双代数.本文考虑了左(H,αH)-Hom-余模代数,由此构造得出广义张量型Hom-李代数,并证明了此情形下的Kegel定理.
Abstract:
In this article,we consider the left(H,αH)-Hom-comodule algebra for a monoidal cotriangular Hom-bialgebra(H,αH). By constructing the generalized monoidal Hom-Lie algebra,we obtain the Kegel’s theorem in this setting.

参考文献/References:

[1] DASKALOYANNNIS C. Generalized deformed Virasoro algebras[J]. Modern Phys Lett A,1992,7(9):806-816.
[2]KASSEL C,TURAEV V G. Double construction for monoidal categories[J]. Acta Mathematica,1995,175:1-48.
[3]LIU K Q. Characterzations of the quantum Witt Algebra[J]. Lett Math Phys,1992,24(4):257-265.[4]HARTWIG J,LARSSON D,SILVESTROV S. Deformations of Lie algebras using σ-derivations[J]. J Algebra,2006,295:314-361.[5]MAKHLOUF A,SILVESTROV S. Hom-algebras and Hom-coalgebras[J]. J Algebra Appl,2010,9:553-589.[6]CAENEPEEL S,GOYVAERTS I. Monoidal Hom-Hopf algebras[J]. Comm Algebra,2011,39:2 216-2 240.[7]LIU L,SHEN B L. Radford’s biproducts and Yetter-Drinfel’d modules for monoidal Hom-Hopf algebras[J]. Journal of mathematical physics,2014,55:031701[8]YOU M M,WANG S H. Constructing new braided T-categories over monoidal Hom-Hopf algebras[J]. Jounal of mathematical physics,2014,55:111701.[9]KEGEL O H. Zur Nilpotenz gewisser assoziativer ringe[J]. Mathematische annalen,1963,149:258-260.[10]BAHTURIN Y,GIAMBRUNO A. Identities of sum of commutative subalgebras[J]. Rendiconti circolo del mathematico di palermo Ser,1994,43(2):250-258.[11]BAHTURIN Y,FISCHMAN D,MONTGOMERY S. On the generalized Lie structure of associative algebras[J]. Israel J of Math,1996,96:27-48.[12]WANG S H. On H-Lie structure of associative algebras in Yetter-Drinfel’d categories[J]. Comm in Algebra,2002,30(1):307-325.[13]WANG S H. An analogue of Kegel’s theorem for quasi-associative algebras[J]. Comm Algebra,2005,33(8):2 607-2 623.[14]ZHOU X,YANG T. Kegel’s theorem over weak Hopf group coalgebras[J]. J of Math(PRC),2013,33(2):228-236.[15]鹿道伟. 广义Drinfel’d量子偶与Yetter-Drinfel’d模表示范畴相关理论研究[D]. 南京:东南大学,2016.

备注/Memo

备注/Memo:
收稿日期:2017-08-15.
基金项目:国家自然科学基金项目(11601231)、中央高校基本科研业务费(KJQN201716).
通讯联系人:周璇,博士,研究方向:代数学. E-mail:zhouxuanseu@126.com
更新日期/Last Update: 2017-12-30