[1]谢宗真,张孝金.关于τ-刚性模的注记[J].南京师范大学学报(自然科学版),2018,41(02):23.[doi:10.3969/j.issn.1001-4616.2018.02.005]
 Xie Zongzhen,Zhang Xiaojin.A Note on τ-Rigid Modules[J].Journal of Nanjing Normal University(Natural Science Edition),2018,41(02):23.[doi:10.3969/j.issn.1001-4616.2018.02.005]
点击复制

关于τ-刚性模的注记()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第41卷
期数:
2018年02期
页码:
23
栏目:
·数学与计算机科学·
出版日期:
2018-06-30

文章信息/Info

Title:
A Note on τ-Rigid Modules
文章编号:
1001-4616(2018)02-0023-03
作者:
谢宗真张孝金
南京信息工程大学数学与统计学院,江苏 南京 210044
Author(s):
Xie ZongzhenZhang Xiaojin
School of Mathematics and Statistics,Nanjing University of Information Science and Technology,Nanjing 210044,China
关键词:
τ-刚性模内射模内射维数局部代数
Keywords:
τ-rigid moduleinjective moduleinjective dimensionlocal algebra
分类号:
O154.2
DOI:
10.3969/j.issn.1001-4616.2018.02.005
文献标志码:
A
摘要:
给定一个本原不可分解的代数Λ,如果Λ的所有的τ-刚性模都是投射模,则它是局部代数. 对于任意一个本原的不可分解代数Γ,内射模DΓ是τ-刚性模当且仅当Γ的自内射维数小于或等于1,其中D为通常的对偶.
Abstract:
For a basic indecomposable finite dimensional algebra Λ,if all τ-rigid Λ-modules are projective,then Λ is local. For any basic indecomposable finite dimensional algebra Γ,then the injective module DΓ is τ-rigid if and only if the injective dimension of Γ is at most one,where D is the usual duality.

参考文献/References:

[1] ADACHI T,IYAMA O,REITEN I. τ-tilting theory[J]. Composito mathematica,2014,150(3):415-452.
[2]MIZUNO Y. Classifying τ-tilting modules over preprojective algebras of Dynkin type[J]. Mathematische zeitschrift,2014,277(3):665-690.
[3]WEI J Q. τ-tilting theory and *-modules[J]. Journal of algebra,2014,414:1-5.
[4]DEMONET L,IYAMA O,JASSO G. τ-tilting finite algebras and g-vectors[J]. ArXiv:1503.00285.
[5]HUANG Z Y,ZHANG Y Y. G-stable support τ-tilting modules[J]. Frontiers of mathematics in China,2016,11(4):1057-1077.[6]IYAMA O,JORGENSEN P,YANG D. Intermediate co-t-structures,two-term silting objects,τ-tilting modules and torsion classes[J]. Algebra and number theory,2014,8(10):2413-2431.
[7]JASSO G. Reduction of τ-tilting modules and torsion pairs[J]. International mathematics,2015,16:7190-7237.
[8]谢宗真,张孝金. 所有τ-刚性模是投射模的代数[J]. 山东大学学报(理学版),2016,51(2):16-20.
[9]ASSEM I,SIMSON D,SKOWROAN’GSKI A. Elements of the representation theory of associative algebras[M]. 北京:世界图书出版公司北京公司,2011:193.

备注/Memo

备注/Memo:
收稿日期:2017-05-30.
基金项目:国家自然科学基金青年基金(11101217,11401488)、江苏省自然科学基金青年基金(BK20130983).
通讯联系人:张孝金,博士,副教授,研究方向:代数表示论. E-mail:xiaojinzhang@sohu.com
更新日期/Last Update: 2018-11-06