[1]刘 娜,胡 边,刘 红.环境对窄锯齿型石墨烯纳米带中边界带的影响[J].南京师范大学学报(自然科学版),2018,41(02):54.[doi:10.3969/j.issn.1001-4616.2018.02.010]
 Liu Na,Hu Bian,Liu Hong.Influence of Environment on Edge Band ofNarrow Zigzag Graphene Nanoribbons[J].Journal of Nanjing Normal University(Natural Science Edition),2018,41(02):54.[doi:10.3969/j.issn.1001-4616.2018.02.010]
点击复制

环境对窄锯齿型石墨烯纳米带中边界带的影响()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第41卷
期数:
2018年02期
页码:
54
栏目:
·物理学·
出版日期:
2018-06-30

文章信息/Info

Title:
Influence of Environment on Edge Band ofNarrow Zigzag Graphene Nanoribbons
文章编号:
1001-4616(2018)02-0054-07
作者:
刘 娜胡 边刘 红
南京师范大学物理科学与技术学院,江苏 南京 210023
Author(s):
Liu NaHu BianLiu Hong
School of Physics and Technology,Nanjing Normal University,Nanjing 210023,China
关键词:
锯齿型石墨烯纳米带跃迁系数能带结构
Keywords:
zigzag graphene nanoribbonshopping coefficientband structure
分类号:
O469
DOI:
10.3969/j.issn.1001-4616.2018.02.010
文献标志码:
A
摘要:
在描述自旋轨道耦合的紧束缚Kane-Mele模型的基础上,我们通过改变边界处原子间的跃迁系数来模拟环境对石墨烯纳米带边界带的影响. 理论研究结果显示,对双边跃迁系数同等调控时,随着跃迁系数的增大,两个边界子能带的费米波矢都在向0.5靠近,能隙线性减小. 进一步研究表明,通过单边调控原子间的跃迁系数,可对相应边界子能带的结构参数进行调控.
Abstract:
Based on the tight binding Kane-Mele model describing the spin orbit coupling,we simulate the effect of environment on the edge states of graphene nanoribbons by changing the hopping coefficient between atoms at the edges. The theoretical results show that when adjusting both of the hopping coefficient at two edge sides,with the increase of the hopping coefficient,the Fermi wave vectors of the two sub-band structures corresponding to two edges,respectively,are close to 0.5,and the energy band gap decreases linearly. Further studies show that by adjusting the hopping coefficient at one single edge side,we can control the structure characteristics of the corresponding sub-band structures.

参考文献/References:

[1] NAKADA K,FUJITA M,DRESSELHAUS G,et al. Edge state in graphene ribbons:nanometer size effect and edge shape dependence[J]. Phys Rev B,1996,54(24):17954-17961.
[2]SUGAI Y. Energy gaps in graphene nanoribbons[J]. Phys Rev Lett,2006,97(21):6803-6806.
[3]PERES N M R,NETO A H C,GUINEA F. Conductance quantization in mesoscopic graphene[J]. Phys Rev B,2006,73(19):5411-5418.
[4]BERAHMAN M,SHEIKHI M H. Transport properties of zigzag graphene nanoribbon decorated with copper clusters[J]. Journal of applied physics,2014,116:093701-093701-8.
[5]LIBISCH F,ROTTER S,BURGD?RFER J. Coherent transport through graphene nanoribbons in the presence of edge disorder[J]. New journal of physics,2011,14(12):3006-3024.[6]EZAWA M. Peculiar width dependence of the electronic property of carbon nanoribbons[J]. Physics,2006,73(4):5432-5449.
[7]YANG L,COHEN M L,LOUIE S G. Magnetic edge-state excitons in zigzag graphene nanoribbons[J]. Phys Rev Lett,2008,101(18):6401-6404.
[8]WAKABAYASHI K. 12-electronic and magnetic properties of nanographites[J]. Phys Rev B,1999,59(12):8271-8282.
[9]YAO W,YANG S A,NIU Q. Edge states in graphene:from gapped flat-band to gapless chiral modes[J]. Phys Rev Lett,2008,102(09):6801-6804.
[10]KANE C L,MELE E J. Quantum spin Hall effect in graphene[J]. Phys Rev Lett,2005,95(22):6801-6804.
[11]KANE C L,MELE E J. Z2 topological order and the quantum spin Hall effect.[J]. Phys Rev Lett,2005,95(14):6802-6805.
[12]LI H,SHENG L,XING D Y. Connection of edge states to bulk topological invariance in a quantum spin Hall state[J]. Phys Rev Lett,2012,108(19):6806-6810.
[13]YAO Y,YE F,QI X L,et al. Spin-orbit gap of graphene:first-principles calculations[J]. Phys Rev B,2006,75(4):1401-1404.
[14]MAJIDI L,ASGARI R. Valley- and spin-switch effects in molybdenum disulfide superconducting spin valve[J]. Phys Rev B,2014,90(16):5440-5452.
[15]EHLEN N,SENKOVSKIY B V,FEDOROV A V,et al. Evolution of electronic structure of few-layer phosphorene from angle-resolved photoemission spectroscopy of black phosphorous[J]. Phys Rev B,2016,94(24):5410-5421.
[16]Wang Z G,Hao N N,Zhang P. Topological winding properties of spin edge states in Kane-Mele graphene model[J]. Phys Rev B,2009,80(11):754-758.
[17]盛利. 自旋陈数理论和时间反演对称破缺的量子自旋霍尔效应[J]. 物理学进展,2014(1):10-27.
[18]SON Y W,COHEN M L,LOUIE S G. Half-metallic graphene nanoribbons.[J]. Nature,2006,444(7 117):347-349.
[19]GUO J,GUNLYCKE D,WHITE C T. Field effect on spin-polarized transport in graphene nanoribbons[J]. Applied physics letters,2008,92(16):163109-163109-3.
[20]GUNLYCKE D,ARESHKIN D A,LI J,et al. Graphene nanostrip digital memory device[J]. Nano letters,2007,7(12):3608-3611.
[21]LIU H,HU B,LIU N. The opposite induced magnetic moment in narrow zigzag graphene nanoribbons[J]. Phys Lett A,2016,380:3738-3742.
[22]胡边,刘娜,刘红. 锯齿型石墨烯纳米带边界态[J]. 南京师大学报(自然科学版),2018,41(1):42-49.
[23]DRESSELHAUS G F,DRESSELHAUS M S,MAVROIDES J G. Spin-orbit interaction in graphite[J]. Carbon,1965,3(3):325-325.
[24]BYCHKOV Y A,RASHABA E I. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers[J]. Journal of physics C:solid state physics,1984,17:6039-6045.
[25]SHENG L,SHENG D N,TING C S,et al. Nondissipative spin Hall effect via quantized edge transport.[J]. Phys Rev Lett,2005,95(13):6602-6605.
[26]YANG Y,XU Z,SHENG L,et al. Time-reversal-symmetry-broken quantum spin Hall effect[J]. Phys Rev Lett,2011,107(6):6602-6606.
[27]BARINGHAUS J,SETTNES M,APROJANZ J,et al. Electron interference in ballistic graphene nanoconstrictions[J]. Phys Rev Lett,2016,116(18):6602-6606.

相似文献/References:

[1]胡 边,刘 娜,刘 红.锯齿型石墨烯纳米带边界态[J].南京师范大学学报(自然科学版),2018,41(01):42.[doi:10.3969/j.issn.1001-4616.2018.01.009]
 Hu Bian,Liu Na,Liu Hong.Study of Edge States in Zigzag Graphene Nanoribbon[J].Journal of Nanjing Normal University(Natural Science Edition),2018,41(02):42.[doi:10.3969/j.issn.1001-4616.2018.01.009]

备注/Memo

备注/Memo:
收稿日期:2017-05-03.
基金项目:国家自然科学基金(10947004).
通讯联系人:刘红,博士,教授,研究方向:理论物理. E-mail:06183@njnu.edu.cn
更新日期/Last Update: 2018-11-06