[1]方谦昊,朱 红,何瀚志,等.基于卷积神经网络的脑膜瘤亚型影像自动分级[J].南京师范大学学报(自然科学版),2018,41(03):22.[doi:10.3969/j.issn.1001-4616.2018.03.004]
 Fang Qianhao,Zhu Hong,He Hanzhi,et al.Automatic Classification of Meningioma Subtype ImageBased on Convolutional Neural Network[J].Journal of Nanjing Normal University(Natural Science Edition),2018,41(03):22.[doi:10.3969/j.issn.1001-4616.2018.03.004]
点击复制

基于卷积神经网络的脑膜瘤亚型影像自动分级()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第41卷
期数:
2018年03期
页码:
22
栏目:
·人工智能算法与应用专栏·
出版日期:
2018-09-30

文章信息/Info

Title:
Automatic Classification of Meningioma Subtype ImageBased on Convolutional Neural Network
文章编号:
1001-4616(2018)03-0022-06
作者:
方谦昊朱 红何瀚志胡俊峰
徐州医科大学医学信息学院,江苏 徐州 221004
Author(s):
Fang QianhaoZhu HongHe HanzhiHu Junfeng
School of Medical Information,Xuzhou Medical University,Xuzhou 221004,China
关键词:
脑膜瘤卷积神经网络LeNet-5脑膜瘤亚型影像分级
Keywords:
meningiomaconvolutional neural networkLeNet-5meningioma subtype image classification
分类号:
TP181
DOI:
10.3969/j.issn.1001-4616.2018.03.004
文献标志码:
A
摘要:
脑膜瘤是颅内常见第二大肿瘤. 脑膜瘤的术前分级有助于临床制定治疗方案和评估预后. 本文对卷积神经网络LeNet-5模型从softmax层、网络结构、迭代下降速率、epoch几个方面进行改进,用于对脑膜瘤亚型影像的自动分级. 该模型不需要对病变组织进行提取,大大提高了脑膜瘤影像自动分级效率. 实验表明:改进的卷积神经网络模型对脑膜瘤亚型影像分级取得良好效果,最高正确率达到91.18%.
Abstract:
Meningioma is the second most common tumor in the brain. The preoperative grading of meningioma can help develop clinical treatment plans and evaluate prognosis. In this paper,the LeNet-5 model of the convolutional neural network is improved from several aspects which include softmax layer,network structure,iterative rate of decline,and epoch for automatic classification of subtype images of meningioma. The model does not require the extraction of diseased tissue,which greatly improves the efficiency of automatic classification of meningioma images. Experiments show that the improved convolutional neural network model has a good effect on the classification of meningioma subtype images,and the highest correct rate reaches 91.18%.

参考文献/References:

[1] 黄冠又,巫玉娟. Wnt/β-catenin信号传导通路与脑膜瘤研究进展[J]. 中国医学创新,2013(33):162-164.
[2]关鉴,马万辉,向科. 脑膜瘤的MRI征象与病理分级的关系[J]. 中国医药科学,2014(17):100-102.
[3]谢韬,金法,姜晓丹,等. 120例脑膜瘤病理表型与肿瘤分级及预后的相关性研究[J]. 东南大学学报(医学版),2016,35(5):688-691.
[4]HINTON G E,RUSLAN R S. Reducing the dimensionality of data with neural networks[J]. Science,2006,313(5786):504-507.
[5]林妙真. 基于深度学习的人脸识别研究[D]. 大连:大连理工大学,2013.
[6]庞荣. 深度神经网络算法研究及应用[D]. 成都:西南交通大学,2016.
[7]唐涔轩,王晓东,姚宇. 基于深度学习与医学先验知识的超声心动图切片识别[J]. 计算机应用,2017,37(s1):211-214.
[8]应俊,杨策源,李全政,等. 基于深度学习方法的慢性阻塞性肺疾病危重度分类研究[J]. 生物医学工程学杂志,2017(6):842-849.
[9]余镇,吴凌云,倪东,等. 基于深度学习的胎儿颜面部超声标准切面自动识别[J]. 中国生物医学工程学报,2017,36(3):267-275.
[10]周飞燕,金林鹏,董军. 卷积神经网络研究综述[J]. 计算机学报,2017,40(6):1229-1251.
[11]KIM B C,YU S S,SUK H I. Deep feature learning for pulmonary nodule classification in a lung CT[C]//International Winter Conference on Brain-Computer Interface,Busan,2016. Piscataway,NJ:IEEE,2016:1-3.
[12]WANG D,KHOSLA A,GARGEYA R,et al. Deep learning for identifying metastatic breast cancer[EB/OL]. [2016-06-18]. https://arxiv.org/abs/1606.05718v1.
[13]GULSHAN V,PENG L,CORAM M,et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. Jama,2016,316(22):2402.
[14]ESTEVA A,KUPREL B,NOVOA R A,et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature,2017,542(7639):115-118.
[15]李智. 脑膜瘤的组织病理学诊断与鉴别诊断要点[J]. 广东医学,2017,38(24):3713-3719.

相似文献/References:

[1]王 征,李皓月,许洪山,等.基于卷积神经网络和SVM的中国画情感分类[J].南京师范大学学报(自然科学版),2017,40(03):74.[doi:10.3969/j.issn.1001-4616.2017.03.011]
 Wang Zheng,Li Haoyue,Xu Hongshan,et al.Chinese Painting Emotion Classification Based onConvolution Neural Network and SVM[J].Journal of Nanjing Normal University(Natural Science Edition),2017,40(03):74.[doi:10.3969/j.issn.1001-4616.2017.03.011]
[2]郑 冬,李向群,许新征.基于轻量化SSD的车辆及行人检测网络[J].南京师范大学学报(自然科学版),2019,42(01):73.[doi:10.3969/j.issn.1001-4616.2019.01.012]
 Zheng Dong,Li Xiangqun,Xu Xinzheng.Vehicle and Pedestrian Detection Model Based on Lightweight SSD[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(03):73.[doi:10.3969/j.issn.1001-4616.2019.01.012]
[3]尤鸣宇,韩 煊.基于样本扩充的小样本车牌识别[J].南京师范大学学报(自然科学版),2019,42(03):1.[doi:10.3969/j.issn.1001-4616.2019.03.001]
 You Mingyu,Han Xuan.Small Sample License Plate Recognition Based on Sample Expansion[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(03):1.[doi:10.3969/j.issn.1001-4616.2019.03.001]
[4]赵文芳,林润生,唐 伟,等.基于深度学习的PM2.5短期预测模型[J].南京师范大学学报(自然科学版),2019,42(03):32.[doi:10.3969/j.issn.1001-4616.2019.03.005]
 Zhao Wenfang,Lin Runsheng,Tang Wei,et al.Forecasting Model of Short-Term PM2.5 ConcentrationBased on Deep Learning[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(03):32.[doi:10.3969/j.issn.1001-4616.2019.03.005]
[5]韩文军,孙小虎,吉根林,等.基于卷积神经网络的多光谱与全色遥感图像融合算法[J].南京师范大学学报(自然科学版),2021,44(03):123.[doi:10.3969/j.issn.1001-4616.2021.03.018]
 Han Wenjun,Sun Xiaohu,Ji Genlin,et al.Multispectral and Panchromatic Remote Sensing Image Fusion AlgorithmBased on Convolutional Neural Networks[J].Journal of Nanjing Normal University(Natural Science Edition),2021,44(03):123.[doi:10.3969/j.issn.1001-4616.2021.03.018]
[6]马晓慧,马尚才,闫俊伢,等.基于距离感知的目标情感分类模型[J].南京师范大学学报(自然科学版),2021,44(04):111.[doi:10.3969/j.issn.1001-4616.2021.04.014]
 Ma Xiaohui,Ma Shangcai,Yan Junya,et al.Distance-Based Model for Target-Level Sentiment Analysis[J].Journal of Nanjing Normal University(Natural Science Edition),2021,44(03):111.[doi:10.3969/j.issn.1001-4616.2021.04.014]
[7]钟桂凤,庞雄文,孙道宗.基于差分进化的卷积神经网络的文本分类研究[J].南京师范大学学报(自然科学版),2022,45(01):136.[doi:10.3969/j.issn.1001-4616.2022.01.019]
 Zhong Guifeng,Pang Xiongwen,Sun Daozong.Research on Text Classification Based on Convolutional Neural Network of Differential Evolution[J].Journal of Nanjing Normal University(Natural Science Edition),2022,45(03):136.[doi:10.3969/j.issn.1001-4616.2022.01.019]
[8]邬忠萍,刘新厂,郝宗波.基于并行CNN和识别策略优化的车牌识别方法研究[J].南京师范大学学报(自然科学版),2023,46(03):98.[doi:10.3969/j.issn.1001-4616.2023.03.013]
 Wu Zhongping,Liu Xinchang,Hao Zongbo.Research of License Plate Recognition Method Based on Parallel CNN and Optimization Strategies[J].Journal of Nanjing Normal University(Natural Science Edition),2023,46(03):98.[doi:10.3969/j.issn.1001-4616.2023.03.013]
[9]宋慧玲,李 勇,张文静.基于联邦迁移的跨项目软件缺陷预测[J].南京师范大学学报(自然科学版),2024,(03):122.[doi:10.3969/j.issn.1001-4616.2024.03.015]
 Song Huiling,Li Yong,Zhang Wenjing.Cross-project Software Defect Prediction Based on Federated Transfer[J].Journal of Nanjing Normal University(Natural Science Edition),2024,(03):122.[doi:10.3969/j.issn.1001-4616.2024.03.015]

备注/Memo

备注/Memo:
收稿日期:2018-04-16.
基金项目:江苏省自然科学基金(BK20130209)、江苏省高校自然科学基金(14KJB520039).
通讯联系人:朱红,教授,研究方向:人工智能、医学图像处理、机器学习与粒度计算. E-mail:zhuhongwin@126.com
更新日期/Last Update: 2018-11-19