[1]张 政,郏建奎,蒋彩云,等.NaOH浓度对水热合成TiO2纳米管形成及光催化性能的影响[J].南京师范大学学报(自然科学版),2018,41(03):52.[doi:10.3969/j.issn.1001-4616.2018.03.009]
 Zhang Zheng,Jia Jiankui,Jiang Caiyun,et al.Effect of NaOH Concentration on Formation and Photocatalytic Performanceof TiO2 Nanotubes Prepared by Hydrothermal Method[J].Journal of Nanjing Normal University(Natural Science Edition),2018,41(03):52.[doi:10.3969/j.issn.1001-4616.2018.03.009]
点击复制

NaOH浓度对水热合成TiO2纳米管形成及光催化性能的影响()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第41卷
期数:
2018年03期
页码:
52
栏目:
·化学·
出版日期:
2018-09-30

文章信息/Info

Title:
Effect of NaOH Concentration on Formation and Photocatalytic Performanceof TiO2 Nanotubes Prepared by Hydrothermal Method
文章编号:
1001-4616(2018)03-0052-07
作者:
张 政1郏建奎1蒋彩云2黄文鑫1冯长生1王玉萍1
(1.南京师范大学江苏省物质循环与污染控制重点实验室,江苏 南京 210023)(2.江苏经贸职业技术学院工程技术系,江苏省食品安全工程技术研发中心,江苏 南京 210007)
Author(s):
Zhang Zheng1Jia Jiankui1Jiang Caiyun2Huang Wenxin1Feng Changsheng1Wang Yuping1
(1.Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control,Nanjing Normal University,Nanjing 210023,China)(2.Department of Engineering and Technology,Jiangsu Institute of Commerce,Jiangsu Engineering andResearch Center of Food Safety,Nanjing 210007,China)
关键词:
NaOH浓度TiO2纳米管水热法光催化亚甲基蓝
Keywords:
NaOH concentrationTiO2 nanotubeshydrothermal methodphotocatalysismethylene blue
分类号:
O643,X703A
DOI:
10.3969/j.issn.1001-4616.2018.03.009
文献标志码:
A
摘要:
以二氧化钛P25和NaOH为原料,通过水热法制备TiO2纳米管,考察了碱浓度对纳米管形成、晶型和形貌的影响. 采用XRD、TEM、BET、XPS等对产物的组成、结构和形貌进行表征. 结果表明,NaOH浓度高于10 mol/L及以上时才能将体系中的P25颗粒溶解-结晶形成钛酸钠卷曲体; 水洗、酸洗和煅烧是形成锐钛矿相二氧化钛纳米管的必要步骤. 当NaOH浓度为10 mol/L时,纳米管的比表面积达到213.30 m2/g,为P25的4.2倍; 金卤灯下照射24 min对20 mg/L亚甲基蓝的降解率可达100%,而P25仅为63.38%.
Abstract:
TiO2 nanotubes were prepared via hydrothermal synthesis by taking titanium dioxide P25 and NaOH as raw materials. The effects of alkali concentration on nanotube formation,crystal form and morphology were investigated. The composition,structure and morphology of the as-prepared samples were characterized by XRD,TEM,BET and XPS. The results showed that the P25 particles in the system can be dissolved and crystallized to form sodium titanate curl body when the NaOH concentration was higher than 10 mol/L. The steps of washing,pickling and calcination were necessary to form anatase phase titanium dioxide nanotubes. When the concentration of NaOH was 10 mol/L,the specific surface area of nanotubes reached 213.30 m2/g,which was 4.2 times as much as that of P25. In photodegradation test,when exposed to metal halide lamp for 24 min,the degradation rate of 20 mg/L methylene blue reached 100% for titanium dioxide nanotubes and 63.38% for P25,respectively.

参考文献/References:

[1] ZHU J P,HOU H H,FENG M M,et al. Research progress on application of nano titanium dioxide in silicate industry[J]. Bulletin of the chinese ceramic society,2016,35(9):2874-2851.
[2]ZHAO B,LIN L,CHEN C,et al. Research progress on crystal growth mechanism of titania/titanate nano-powder materials[J]. Journal of inorganic materials,2013,28(7):683-690.
[3]FAN Z H,LIU D R,SHI G L,et al. Research progress in morphology-controllable hydrothermal synthesis of TiO2 nanostructures[J]. Studies in synthetic chemistry,2015,3(3):64-69.
[4]LI T L,ZHANG Y,TAO W. The preparation and TiO2 nanotubes photocatalytic degradation of methyl orange research[J]. Sichuan nonferrous metals,2010(4):20-23.
[5]王俏,王威,崔福义,等. 二氧化钛纳米管的制备、改性及应用[J]. 化工进展,2015,34(5):1311-1316.
[6]ZHANG A Y,YU L Q,HE J D,et al. Photoelectrochemical properties of CdS-TiO2 heterojunction nanocomposites[J]. Applied chemical industry,2017,46(3):439-443.
[7]WANG J R,LI W Y,YAO B D. Hydrothermally produced titania nanotubes:formation mechanism,influence factors and applications[J]. Materials review,2016,30(5):144-152.
[8]YNAG Z G,WANG Y,YAO X J,et al. Progress on preparation and application of titania nanotubes[J]. Applied chemical industry,2014,11:2094-2096.
[9]YUAN F,WU C,CAI Y,et al. Synthesis of phytic acid-decorated titanate nanotubes for high efficient and high selective removal of U(VI)[J]. Chemical engineering journal,2017,156(3):353-365.
[10]YAO B D,CHAN Y F,ZHANG X Y,et al. Formation mechanism of TiO2 nanotubes[J]. Applied physics letters,2003,82(2):281-283.
[11]KUKOVECZ A,HODOS M,HORVATH E,et al. Oriented crystal growth model explains the formation of titania nanotubes[J]. Journal of physical chemistry,2005,109(38):17781-17783.
[12]WANG Y Q,HU G Q,DUAN X F,et al. Microstructure and formation mechanism of titanium dioxide nanotubes[J]. Chemical physics letters,2002,365(5/6):427-431.
[13]PAVLOVIAc’1 D M,BABIAc’1 S,HORVAT A J M,et al. Sample preparation in analysis of pharmaceuticals[J]. Trac trends in analytical chemistry,2007,26(11):1062-1075.
[14]杨志冲. 高效石墨相氮化碳基光催化材料的制备及其性能研究[D]. 杭州:浙江理工大学,2015.
[15]李跃军,曹铁平,梅泽民,等. Pr掺杂Bi2MoO6/TiO2复合纳米纤维的制备及可见光催化性能[J]. 高等学校化学学报,2017,38(12):2313-2319.
[16]SUN J,LIU S X. Preparation of lanthanum-doped TiO2 film and its application for gaseous toluene removal[J]. Journal of inorganic materials,2010,25(9):928-934.
[17]LIU Z Q,MA J,ZHANG Z L,et al. SnO2-TiO2 solid catalyst for simultaneous reduction of SO2 and NO by CO II. physicochemical properties of the catalyst[J]. Chinese journal of catalysis,2004,25(4):302-308.
[18]魏学刚. TiO2基稀磁半导体的制备及室温铁磁性研究[D]. 兰州:兰州理工大学,2014.
[19]赵斌. 特殊形貌TiO2/钛酸盐纳米材料的合成与生成机理[D]. 上海:华东理工大学,2011.
[20]KASUGA T,HIRAMATSU M,HOSON A,et al. Titania nanotubes prepared by chemical processing[J]. Advanced materials,2010,11(15):1307-1311.
[21]ZHANG S,PENG L M,CHEN Q,et al. Formation mechanism of H2Ti3O7 nanotubes[J]. Physical review letters,2003,91(25):12475-12493.
[22]BAVYKIN D V,PARMON V N,LAPKIN A A,et al. The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes[J]. Journal of materials chemistry,2004,14(22):3370-3377.
[23]SUN X,LI Y. Synthesis and characterization of ion-exchangeable titanate nanotubes[J]. Chemistry,2003,9(10):2229-2238.
[24]武伦鹏,赵莲花,张海明,等. 光电流法研究TiO2薄膜表面吸附氧对光催化活性的影响[J]. 物理化学学报,2007,23(5):765-768.

备注/Memo

备注/Memo:
收稿日期:2018-06-06.
基金项目:国家自然科学基金(51578295)、江苏省自然科学基金(BK20161479)、江苏省高校自然科学研究项目(16KJB150043).
通讯联系人:王玉萍,博士,教授,研究方向:纳米半导体光催化材料及其在环境中的应用. E-mail:wangyuping@njnu.edu.cn
更新日期/Last Update: 2018-11-19