参考文献/References:
[1] 李晓举. 大肠杆菌单链结合蛋白SSB重组功能研究[D]. 郑州:河南农业大学,2013.
[2]朱玉贤,郑晓峰,李毅. 现代分子生物学[M]. 北京:高等教育出版社,2013.
[3]陶果,信吉阁,肖晶,等 基因敲除技术最新研究进展及其应用[J]. 安徽农业科学,2013(29):11605-11608.
[4]胡逢雪,丁锐,崔震海,等. 大肠杆菌基因无痕敲除技术及策略[J]. 生物技术通讯,2013(4):552-557.
[5]吴程华,严玉霖,高洪,等. Red同源重组技术在大肠埃希菌基因敲除中的应用[J]. 上海畜牧兽医通讯,2015(1):9-11.
[6]KOWALCZYKOWSKI S C,DIXON D A,EGGLESTON A K,et al. Biochemistry of homologous recombination in Escherichia coli[J]. Microbiol Rev,1994,58(3):401-465.
[7]ROCHA E P,CORNET E,MICHEL B. Comparative and evolutionary analysis of the bacterial homologous recombination systems[J]. Plos Genetics,2005,1(2):e15.
[8]JASIN M,SCHIMMEL P. Deletion of an essential gene in Escherichia coli by site-specific recombination with linear DNA fragments[J]. Journal of bacteriology,1984,159(2):783-786.
[9]ZHANG Y,MUYRERS J P,TESTA G,et al. DNA cloning by homologous recombination in Escherichia coli[J]. Nature biotechnology,2000,18(12):1314.
[10]ZHANG Y,BUCHHOLZ F,MUYRERS J P,et al. A new logic for DNA engineering using recombination in Escherichia coli[J]. Nature genetics,1998,20(2):123.
[11]DATSENKO K A,WANNER B L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products[J]. Proceedings of the national academy of sciences of the United States of America,2000,97(12):6640.
[12]BROACH J R,HICKS J B. Replication and recombination functions associated with the yeast plasmid,2 mu circle[J]. Cell,1980,21(2):501-508.
[13]吕沈聪,赵颖颖,钟卫鸿. Red同源重组在大肠杆菌基因敲除中的应用[J]. 化学与生物工程,2013,30(6):1-6.
[14]HERRING C D,GLASNER J D,BLATTNER F R. Gene replacement without selection:regulated suppression of amber mutations in Escherichia coli[J]. Gene,2003,311(1):153-163.
[15]YU B J,KANG K H,LEE J H,et al. Rapid and efficient construction of markerless deletions in the Escherichia coli genome[J]. Nucleic acids research,2008,36(14):e84-e84.
[16]DOUDNA J A,CHARPENTIER E. The new frontier of genome engineering with CRISPR-Cas9[J]. Science,2014,346(6213):1258096.
[17]YANG H,AHN C,SHIN E K,et al. NCKX3 was compensated by calcium transporting genes and bone resorption in a NCKX3 KO mouse model[J]. Molecular and cellular endocrinology,2017:1-10.
[18]MéNORET S,TESSON L,REMY S,et al. Advances in transgenic animal models and techniques[J]. Transgenic research,2017(4):1-6.
[19]GIL M A,MARTINEZ C A,NOHALEZ A,et al. Developmental competence of porcine genome edited zygotes[J]. Molecular reproduction and development,2017,84(9):814.
[20]FERNáNDEZ A,JOSA S,MONTOLIU L. A history of genome editing in mammals[J]. Mammalian genome,2017:1-10.
[21]RUAN J,JIE X,CHEN-TSAI R Y,et al. Genome editing in livestock:are we ready for a revolution in animal breeding industry?[J]. Transgenic research,2017,26(6):1-12.
[22]SUN L,WU S,DAI C H,et al. Insight into the molecular mechanism of miR-192 regulating Escherichia coli resistance in piglets[J]. Biosci Rep,2018,38(1):1-13.
[23]沈延,肖安,黄鹏,等. 类转录激活因子效应物核酸酶(TALEN)介导的基因组定点修饰技术[J]. 遗传,2013,35(4):395-409.
[24]严爱芬,刘婉霞,刘芳,等. TALEN技术研究进展[J]. 广东农业科学,2015,42(23):145-150.
[25]KUSANO H,ONODERA H,KIHIRA M,et al. A simple gateway-assisted construction system of TALEN genes for plant genome editing[J]. Sci Rep,2016,6:30234.
[26]左其生,李东,张亚妮,等. CRISPR-Cas介导的基因编辑工具[J]. 生物技术通报,2014,(7):37-43.
[27]王晔博. CRISPR/Cas9靶向编辑技术的优化及其在干细胞中的应用[D]. 杭州:浙江大学,2016.
[28]MARSHALL R,MAXWELL C S,COLLINS S P,et al. Rapid and scalable characterization of CRISPR technologies using an E.coli cell-free transcription-translation system[J]. Molecular cell,2017,69(1):146-157.
[29]LIU H,SUI T,LIU D,et al. Multiple homologous genes knockout(KO)by CRISPR/Cas9 system in rabbit[J]. Gene,2018,647:261-267.
[30]WU M Y,SUNG L Y,LI H,et al. Combining CRISPR and CRISPRi systems for metabolic engineering of E.coli and 1,4-BDO biosynthesis[J]. Acs synthetic biology,2017,6(12):2350-2361.
[31]李君红,张富婷,桑春艳,等. CRISPR基因编辑技术在肿瘤研究中的应用[J]. 解放军医药杂志,2015,27(9):95-99.
[32]CHANG Y,SU T,QI Q,et al. Easy regulation of metabolic flux inEscherichia coliusing an endogenous type I-E CRISPR-Cas system[J]. Microbial cell factories,2016,15(1):195.
[33]ABUDAYYEH O O,GOOTENBERG J S,KONERMANN S,et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J]. Science,2016,353(6299):aaf5573.
[34]BALBOA D,WELTNER J,EUROLA S,et al. Conditionally stabilized dCas9 activator for controlling gene expression in human cell reprogramming and differentiation[J]. Stem cell reports,2015,5(3):448-459.
[35]MA H,TU L C,NASERI A,et al. CRISPR-Cas9 nuclear dynamics and target recognition in living cells[J]. Journal of cell biology,2016,214(5):529.
[36]TUFAN T. CRISPR-STOP:Gene silencing through base editing-induced nonsense mutations[J]. Nature methods,2017,14(7):710.
[37]NELLES D A,FANG M Y,O’CONNELL M R,et al. Programmable RNA tracking in live cells with CRISPR/Cas9[J]. Cell,2016,165(2):488-496.
[38]QI L,LARSON M,GILBERT L,et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell,2013,152(5):1173-1183.
[39]PEREZPINERA P,KOCAK D D,VOCKLEY C M,et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors[J]. Nature methods,2013,10(10):973-976.
[40]NISHIDA K,ARAZOE T,YACHIE N,et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems[J]. Science,2016,353(6305):aaf8729.