[1]薛 藩,韦慧仙,胡珈玮,等.基因编辑方法研究进展——以大肠杆菌基因敲除方法为例[J].南京师范大学学报(自然科学版),2018,41(03):102.[doi:10.3969/j.issn.1001-4616.2018.03.016]
 Xue Fan,Wei Huixian,Hu Jiawei,et al.Progress in Gene Editing Methods—Taking the E.coli Gene Knockout Method as an Example[J].Journal of Nanjing Normal University(Natural Science Edition),2018,41(03):102.[doi:10.3969/j.issn.1001-4616.2018.03.016]
点击复制

基因编辑方法研究进展——以大肠杆菌基因敲除方法为例()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第41卷
期数:
2018年03期
页码:
102
栏目:
·生命科学·
出版日期:
2018-09-30

文章信息/Info

Title:
Progress in Gene Editing Methods—Taking the E.coli Gene Knockout Method as an Example
文章编号:
1001-4616(2018)03-0102-07
作者:
薛 藩韦慧仙胡珈玮王进军
扬州大学环境科学与工程学院,江苏 扬州 225127
Author(s):
Xue FanWei HuixianHu JiaweiWang Jinjun
College of Environmental Science and Engineering,Yangzhou University,Yangzhou 225127,China
关键词:
大肠杆菌基因修饰Red同源重组CRISPR/Cas技术
Keywords:
Escherichia coligene modificationred homologous recombinationCRISPR/Cas technology
分类号:
Q348
DOI:
10.3969/j.issn.1001-4616.2018.03.016
文献标志码:
A
摘要:
大肠杆菌是分子生物学的重要研究对象,是生产氨基酸、有机酸和重组蛋白等物质的主要微生物. 在分子生物实验中,常常不需要完整的大肠杆菌基因序列,这时如何截取所需要的基因序列就成了值得研究的问题. Red同源重组是大肠杆菌基因敲除的传统方法,主要利用自身的RecA同源重组系统编码中RecA和RecBCD蛋白,介导DNA进行同源重组. 几经技术革新,但该系统仍然存在很多不足. 基因组编辑三大技术是TALEN、ZFN和CRISPR/Cas,其中的CRISPR/Cas技术更是当今世界上最具发展前景的革命性基因修饰技术.
Abstract:
Escherichia coli is an important research object of molecular biology,it is the main microbe who can produce amino acids,organic acids and recombinant proteins and other substances. In molecular biology experiments,we do not need a complete sequence of Escherichia coli gene,then how to intercept the gene sequence become worthy of study. Red homologous recombination is the traditional method of gene knockout of Escherichia coli. The RecA and RecBCD proteins are mainly encoded by RecA homologous recombination system,which mediates DNA for homologous recombination. After several technological innovation,there are still many deficiencies. Genomics editing includes the three major technologies,TALEN,ZFN and CRISPR/Cas. One of the CRISPR/Cas technology is the world’s most promising revolutionary genetic modification technology.

参考文献/References:

[1] 李晓举. 大肠杆菌单链结合蛋白SSB重组功能研究[D]. 郑州:河南农业大学,2013.
[2]朱玉贤,郑晓峰,李毅. 现代分子生物学[M]. 北京:高等教育出版社,2013.
[3]陶果,信吉阁,肖晶,等 基因敲除技术最新研究进展及其应用[J]. 安徽农业科学,2013(29):11605-11608.
[4]胡逢雪,丁锐,崔震海,等. 大肠杆菌基因无痕敲除技术及策略[J]. 生物技术通讯,2013(4):552-557.
[5]吴程华,严玉霖,高洪,等. Red同源重组技术在大肠埃希菌基因敲除中的应用[J]. 上海畜牧兽医通讯,2015(1):9-11.
[6]KOWALCZYKOWSKI S C,DIXON D A,EGGLESTON A K,et al. Biochemistry of homologous recombination in Escherichia coli[J]. Microbiol Rev,1994,58(3):401-465.
[7]ROCHA E P,CORNET E,MICHEL B. Comparative and evolutionary analysis of the bacterial homologous recombination systems[J]. Plos Genetics,2005,1(2):e15.
[8]JASIN M,SCHIMMEL P. Deletion of an essential gene in Escherichia coli by site-specific recombination with linear DNA fragments[J]. Journal of bacteriology,1984,159(2):783-786.
[9]ZHANG Y,MUYRERS J P,TESTA G,et al. DNA cloning by homologous recombination in Escherichia coli[J]. Nature biotechnology,2000,18(12):1314.
[10]ZHANG Y,BUCHHOLZ F,MUYRERS J P,et al. A new logic for DNA engineering using recombination in Escherichia coli[J]. Nature genetics,1998,20(2):123.
[11]DATSENKO K A,WANNER B L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products[J]. Proceedings of the national academy of sciences of the United States of America,2000,97(12):6640.
[12]BROACH J R,HICKS J B. Replication and recombination functions associated with the yeast plasmid,2 mu circle[J]. Cell,1980,21(2):501-508.
[13]吕沈聪,赵颖颖,钟卫鸿. Red同源重组在大肠杆菌基因敲除中的应用[J]. 化学与生物工程,2013,30(6):1-6.
[14]HERRING C D,GLASNER J D,BLATTNER F R. Gene replacement without selection:regulated suppression of amber mutations in Escherichia coli[J]. Gene,2003,311(1):153-163.
[15]YU B J,KANG K H,LEE J H,et al. Rapid and efficient construction of markerless deletions in the Escherichia coli genome[J]. Nucleic acids research,2008,36(14):e84-e84.
[16]DOUDNA J A,CHARPENTIER E. The new frontier of genome engineering with CRISPR-Cas9[J]. Science,2014,346(6213):1258096.
[17]YANG H,AHN C,SHIN E K,et al. NCKX3 was compensated by calcium transporting genes and bone resorption in a NCKX3 KO mouse model[J]. Molecular and cellular endocrinology,2017:1-10.
[18]MéNORET S,TESSON L,REMY S,et al. Advances in transgenic animal models and techniques[J]. Transgenic research,2017(4):1-6.
[19]GIL M A,MARTINEZ C A,NOHALEZ A,et al. Developmental competence of porcine genome edited zygotes[J]. Molecular reproduction and development,2017,84(9):814.
[20]FERNáNDEZ A,JOSA S,MONTOLIU L. A history of genome editing in mammals[J]. Mammalian genome,2017:1-10.
[21]RUAN J,JIE X,CHEN-TSAI R Y,et al. Genome editing in livestock:are we ready for a revolution in animal breeding industry?[J]. Transgenic research,2017,26(6):1-12.
[22]SUN L,WU S,DAI C H,et al. Insight into the molecular mechanism of miR-192 regulating Escherichia coli resistance in piglets[J]. Biosci Rep,2018,38(1):1-13.
[23]沈延,肖安,黄鹏,等. 类转录激活因子效应物核酸酶(TALEN)介导的基因组定点修饰技术[J]. 遗传,2013,35(4):395-409.
[24]严爱芬,刘婉霞,刘芳,等. TALEN技术研究进展[J]. 广东农业科学,2015,42(23):145-150.
[25]KUSANO H,ONODERA H,KIHIRA M,et al. A simple gateway-assisted construction system of TALEN genes for plant genome editing[J]. Sci Rep,2016,6:30234.
[26]左其生,李东,张亚妮,等. CRISPR-Cas介导的基因编辑工具[J]. 生物技术通报,2014,(7):37-43.
[27]王晔博. CRISPR/Cas9靶向编辑技术的优化及其在干细胞中的应用[D]. 杭州:浙江大学,2016.
[28]MARSHALL R,MAXWELL C S,COLLINS S P,et al. Rapid and scalable characterization of CRISPR technologies using an E.coli cell-free transcription-translation system[J]. Molecular cell,2017,69(1):146-157.
[29]LIU H,SUI T,LIU D,et al. Multiple homologous genes knockout(KO)by CRISPR/Cas9 system in rabbit[J]. Gene,2018,647:261-267.
[30]WU M Y,SUNG L Y,LI H,et al. Combining CRISPR and CRISPRi systems for metabolic engineering of E.coli and 1,4-BDO biosynthesis[J]. Acs synthetic biology,2017,6(12):2350-2361.
[31]李君红,张富婷,桑春艳,等. CRISPR基因编辑技术在肿瘤研究中的应用[J]. 解放军医药杂志,2015,27(9):95-99.
[32]CHANG Y,SU T,QI Q,et al. Easy regulation of metabolic flux inEscherichia coliusing an endogenous type I-E CRISPR-Cas system[J]. Microbial cell factories,2016,15(1):195.
[33]ABUDAYYEH O O,GOOTENBERG J S,KONERMANN S,et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J]. Science,2016,353(6299):aaf5573.
[34]BALBOA D,WELTNER J,EUROLA S,et al. Conditionally stabilized dCas9 activator for controlling gene expression in human cell reprogramming and differentiation[J]. Stem cell reports,2015,5(3):448-459.
[35]MA H,TU L C,NASERI A,et al. CRISPR-Cas9 nuclear dynamics and target recognition in living cells[J]. Journal of cell biology,2016,214(5):529.
[36]TUFAN T. CRISPR-STOP:Gene silencing through base editing-induced nonsense mutations[J]. Nature methods,2017,14(7):710.
[37]NELLES D A,FANG M Y,O’CONNELL M R,et al. Programmable RNA tracking in live cells with CRISPR/Cas9[J]. Cell,2016,165(2):488-496.
[38]QI L,LARSON M,GILBERT L,et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell,2013,152(5):1173-1183.
[39]PEREZPINERA P,KOCAK D D,VOCKLEY C M,et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors[J]. Nature methods,2013,10(10):973-976.
[40]NISHIDA K,ARAZOE T,YACHIE N,et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems[J]. Science,2016,353(6305):aaf8729.

相似文献/References:

[1]李东霞,杨振,潘少坤,等.原核表达系统pET28a(+)中抗CD20微抗体的构建和表达[J].南京师范大学学报(自然科学版),2012,35(03):74.
 Li Dongxia,Yang Zhen,Pan Shaokun,et al.Construction and Expression of Anti-CD20 Minibody in pET28a(+) of Prokaryotic Expression System[J].Journal of Nanjing Normal University(Natural Science Edition),2012,35(03):74.

备注/Memo

备注/Memo:
收稿日期:2017-10-24.
基金项目:教育部留学回国人员科研启动基金(20151098)、扬州市基础研究计划(自然科学基金)-面上项目(YZ2015098)、扬州大学高层次人才科研启动基金、扬州大学大学生科技创新基金.
通讯联系人:王进军,副教授,研究方向:环境微生物学. E-mail:wangjinjun@yzu.edu.cn
更新日期/Last Update: 2018-11-19