[1]张 俊.粘性BBM型分数阶方程的数值方法[J].南京师范大学学报(自然科学版),2018,41(04):19.[doi:10.3969/j.issn.1001-4616.2018.04.004]
 Zhang Jun.Numerical Methods for Solving BBM Type Viscous Fractional Equation[J].Journal of Nanjing Normal University(Natural Science Edition),2018,41(04):19.[doi:10.3969/j.issn.1001-4616.2018.04.004]
点击复制

粘性BBM型分数阶方程的数值方法()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第41卷
期数:
2018年04期
页码:
19
栏目:
·数学与计算机科学·
出版日期:
2018-12-31

文章信息/Info

Title:
Numerical Methods for Solving BBM Type Viscous Fractional Equation
文章编号:
1001-4616(2018)04-0019-07
作者:
张 俊
贵州财经大学数统学院,贵州 贵阳 550025
Author(s):
Zhang Jun
School of Mathematics and Statistical,Guizhou University of Finance and Economics,Guiyang 550025,China
关键词:
分数阶方程无条件稳定误差估计谱方法
Keywords:
fractional equationunconditionally stableerror estimatesspectral method
分类号:
O156.5
DOI:
10.3969/j.issn.1001-4616.2018.04.004
文献标志码:
A
摘要:
本文构造了两种求解BBM型粘性分数阶方程的数值格式,分析了两种格式的稳定性与误差估计,严格证明了两种格式是无条件稳定的,两种格式的收敛都是O(Δt3/2+N1-m),数值结果验证了理论分析的准确性.
Abstract:
In this paper,two numerical schemes for solving BBM type viscous fractional equation are constructed. We analyze the stability and error estimates of the two schemes,a rigorous analysis shows that the proposed schemes are unconditionally stable,and the convergence of two schemes are convergent with order O(Δt3/2+N1-m),numerical results are consistent with the known theoretical prediction.

参考文献/References:

[1] KAKUTANI T,MATSUUCHI K. Efect of viscosity on long gravity waves[J]. Journal of the physical society of Japan,1975,39(1):237-246.
[2]LIU P L F,ORFILA A. Viscous effects on transient long-wave propagation[J]. Journal of fluid mechanics,2004,520(1):83-92.
[3]SAUT J C,BONA J L,CHEN M. Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I:derivation and linear theory[J]. Journal of nonlinear science,2002,12(4):283-318.
[4]DUTYKH D,DIAS F. Viscous potential free-surface flows in fluid layer of finite depth[J]. Comptes rendus mathematique,2007,345(2):113-118.
[5]DUTYKH D. Visco-potential free-surface flows and long wave modelling[J]. European journal of mechanics B/fluids,2009,28(3):430-443.
[6]CHEN M,DUMONT S,DUPAIGNE L,et al. Decay of solutions to a water wave model with a nonlocal viscous dispersive term[J]. Discrete and continuous dynamical systems,2010,27(4):1473-1492.
[7]CHEN M. Numerical investigation of a two-dimensional Boussinesq system[J]. Discrete and continuous dynamical systems,2009,28(4):1169-1190.
[8]DUMONT S,DUVAL J B. Numerical investigation of the decay rate of solutions to models for water waves with nonlocal viscosity[J]. International journal of numerical analysis and modeling,2013,10(2):333-349.
[9]ZHANG J,XU C. Finite difference/spectral approximations to a water wave model with a nonlocal viscous term[J]. Applied mathematical modelling,2014,38(19):4912-4925.
[10]LIN Y M,XU C J. Finite difference/spectral approximations for the time-fractional diffusion equation[J]. Journal of computational physics,2007,225(2):1533-1552.
[11]CANUTO C,HUSSAINI M,QUARTERONI A,et al. Spectral methods[M]. Berlin:Springer-Verlag,2006.
[12]KHISMATULLIN D,RENARDY Y,RENARDY M. Development and implementation of VOF-PROST for 3D viscoelastic liquid-liquid simulations[J]. Journal of non-newtonian fluid mechanics,2006,140(1):120-131.

相似文献/References:

[1]张 俊,范馨月.一类浅水波模型的数值方法[J].南京师范大学学报(自然科学版),2015,38(01):32.
 Zhang Jun,Fan Xinyue.Numerical Methods for a Class of Shallow Water Equation[J].Journal of Nanjing Normal University(Natural Science Edition),2015,38(04):32.
[2]林府标,马丽荣.KdV型粘性分数阶方程的数值解[J].南京师范大学学报(自然科学版),2020,43(03):28.[doi:10.3969/j.issn.1001-4616.2020.03.006]
 Lin Fubiao,Ma Lirong.Numerical Methods for KdV Type Fractional Order Equationwith a Nonlocal Viscous Term[J].Journal of Nanjing Normal University(Natural Science Edition),2020,43(04):28.[doi:10.3969/j.issn.1001-4616.2020.03.006]

备注/Memo

备注/Memo:
收稿日期:2017-10-13.
基金项目:贵州省教育厅青年科技人才成长项目(黔教合KY字[2016]170).
通讯联系人:张俊,博士,副教授,研究方向:计算数学. E-mail:zj654440@163.com
更新日期/Last Update: 2018-12-30