参考文献/References:
[1] WANG L,SHI H B. Improved kernel PLS-based fault detection approach for nonlinear chemical processes[J]. Chinese journal of chemical engineering,2014,22(6):657-663.
[2]TONG C D,PALAZOGLU A,YAN X F. Improved ICA for process monitoring based on ensemble learning and Bayesian inference[J]. Chemometrics and intelligent laboratory systems,2014,135:141-149
[3]KANO M,HASEBE S,HASHIMOTO I H. A new multivariate statistical process monitoring method using principal component analysis[J]. Computer & chemical engineering,2001,25(7/8):1103-1113.
[4]NOMIKOS P,MACGREGOR J F. Monitoring batch processes using multiway principal component analysis[J]. American chemical engineering journal,1994,40(8):1361-1375.
[5]GE Z,YANG C,SONG Z. Improved kernel PCA-based monitoring approach for nonlinear processes[J]. Chemical engineering science,2009,64(9):2245-2255.
[6]JIE Y. A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes[J]. Chemical engineering science,2012,68(1):506-519.
[7]JIANG Q C,YAN X F. Monitoring multi-mode plant-wide processes by using mutual information-based multi-block PCA,joint probability,and Bayesian inference[J]. Chemometrics and intelligent laboratory systems,2014,136:121-137.
[8]NOR N M,HUSSAIN M A,HASSAN C R. Fault diagnosis and classification framework using multi-scale classification based on kernel Fisher discriminant analysis for chemical process system[J]. Applied soft computing,2017,61:959-972.
[9]LIU Y J,CHEN T,YAO Y. Nonlinear process monitoring and fault isolation using extended maximum variance unfolding[J]. Journal of process control,2014,24(6):880-891.
[10]ZHANG Y W,FU Y J,WANG Z B,et al. Fault detection based on modified kernel semi-supervised locally linear embedding[J]. IEEE access,2018,6:479-487.
[11]RONG G,LIU S Y,SHAO J D. Fault diagnosis by locality preserving discriminant analysis and its kernel variation[J]. Computer & chemical engineering,2013,49:105-113.
[12]CHEN G,LIU F L,HUANG W. Sparse discriminant manifold projections for bearing fault diagnosis[J]. Journal of sound and vibration,2017,399:330-344.
[13]YU J B. Hidden Markov models combining local and global information for nonlinear and multimodal process monitoring[J]. Journal of process control,2010,20:344-359.
[14]WANG X G,FENG H C,FAN Y P. Fault detection and classification for complex processes using semi-supervised learning algorithm[J]. Chemometrics and intelligent laboratory systems,2015,149:24-32.
[15]ZHEN J H,SONG Z H. Semi-supervised learning for probabilistic partial least squares regression model and soft sensor application[J]. Journal of process control,2018,64:123-131.
[16]GE Z Q,ZHONG S Y,ZHANG Y W. Semi-supervised kernel learning for FDA model and its application for fault classification in industrial processes[J]. IEEE transactions on industrial informatics,2016,12(4):1403-1411.
[17]FENG J,WANG J,ZHANG H G,et al. Fault diagnosis method of joint fisher discriminant analysis based on the local and global manifold learning and its kernel version[J]. IEEE transactions on automation science and engineering,2016,13(1):122-133.
[18]WEI J,MENG M,WANG J B,et al. Adaptive semi-supervised dimensionality reduction with sparse representation using pairwise constraints[J]. Neurocomputing,2016,177:564-571.
[19]XU Y,SHEN F M,XU X,et al. Large-scale image retrieval with upervised sparse hashing[J]. Neurocomputing,2017,229:45-53.
[20]SUN R B,YANG Z B,CHEN X F,et al. Gear fault diagnosis based on the structured sparsity time-frequency analysis[J]. Mechanical systems and signal processing,2018,102:346-363.
[21]XIAO Z H,WANG H G,ZHOU J W. Robust dynamic process monitoring based on sparse representation preserving embedding[J]. Journal of process control,2016,40:119-133.
[22]GU J,JIAO L C,YANG S Y,et al. Sparse learning based fuzzy c-means clustering[J]. Knowledge-based systems,2017,119:113-125.
[23]ZHANG Y,XIANG M,YANG B. Linear dimensionality reduction based on hybrid structure preserving projections[J]. Neurocomputing,2016,173:518-529.
[24]SHAO Z F,ZHANG L. Sparse dimensionality reduction of hyperspectral image based on semi-supervised local Fisher discriminant analysis[J]. International journal of applied earth observation and geoinformation,2014,31:122-129.
[25]马小虎,谭延琪. 基于鉴别稀疏保持嵌入的人脸识别算法[J]. 自动化学报,2014,40(1):73-82.
[26]CHEN P,JIAO L C,LIU F,et al. Semi-supervised double sparse graphs based discriminant analysis for dimensionality reduction[J]. Pattern recognition,2017,61:361-378.
[27]HE G,DING K,LIN H. Gearbox coupling modulation separation method based on match pursuit and correlation filtering[J]. Mechanical systems and signal processing,2016,66/67:597-611.
[28]李海山. 基于稀疏表示理论的地震信号处理方法研究[D]. 青岛:中国石油大学,2013.
[29]杜佳兵,唐刚,王华庆. 基于信号空间压缩感知算法的机械故障诊断[J]. 北京化工大学学报(自然科学版),2017,44(5):85-90.
[30]VAREWYCK M,MARTENS J P. A practical approach to model selection for support vector machines with a Gaussian kernel[J]. IEEE transactions on systems,man,and cybernetics Part B(Cybernetics),2011,41(2):330-340.
[31]郑鑫,田学民,张汉元. 基于动态稀疏保局投影的故障检测方法[J]. 化工学报,2016,67(3):833-838.
[32]YU L,YANF D,WANG H. Sparse multiple maximum scatter difference for dimensionality reduction[J]. Digital signal processing,2017,62,91-100.
[33]DOWNS J J,VOGEL E F. A plant-wide industrial process control problem[J]. Computers & chemical engineering,1993,17(3):245-255.
[34]LEE J M,QIN S J,LEE I B. Fault detection and diagnosis based on modified independent component analysis[J]. American chemical engineering journal,2006,52(10):3501-3514.
[35]文巧钧. 基于状态空间模型的复杂动态过程监测方法研究[D]. 杭州:浙江大学,2014.