参考文献/References:
[1] HUANG K,YANG H,KING I,et al. Maxi-min margin machine:learning large margin classifiers locally and globally[J]. IEEE transactions on neural networks,2008,19(2):260-272.
[2]VAPNIK V. The nature of statistical learning theory[C]//Conference on artificial intelligence. Montreal,Canada:Springer-Verlag,1995:988-999.
[3]SUYKENS J A K,VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural processing letters,1999,9(3):293-300.
[4]FUNG G. Proximal support vector machine classifier[J]. Machine learning,2005,59(1/2):77-97.
[5]MANGASARIAN O L,WILD E W. Multisurface proximal support vector machine classification via generalized eigenvalues[J]. IEEE transactions on pattern analysis & machine intelligence,2006,28(1):69-74.
[6]HUANG K,ZHENG D,KING I,et al. Arbitrary norm support vector machines[J]. Neural computation,2014,21(2):560-582.
[7]GU B,SHENG V S. A robust regularization path algorithm for γ-support vector classification[J]. IEEE transactions on neural networks and learning systems,2017,28(5):1241-1248.
[8]RASTOGI R,SAIGAL P,CHANDRA S. Angle-based twin parametric-margin support vector machine for pattern classification[J]. Knowledge-based systems,2018,139:64-77.
[9]NAN S,SUN L,CHEN B,et al. Density-dependent quantized least squares support vector machine for large data sets[J]. IEEE transactions on neural networks and learning systems,2017,28(1):94-106.
[10]TIPPING M E. Sparse Bayesian learning and the relevance vector machine[J]. Journal of machine learning research,2001,1(3):211-244.
[11]ZHENG W,LIN Z,WANG H. L1-norm kernel discriminant analysis via Bayes error bound optimization for robust feature extraction[J]. IEEE transactions on neural networks and learning systems,2014,25(4):793-805.
[12]WANG L,SHEN X. On L1-norm multiclass support vector machines:methodology and theory[J]. Journal of the American statistical association,2007,102(478):583-594.
[13]YAN H,YE Q,YU D J,et al. Least squares twin bounded support vector machines based on L1-norm distance metric for classification[J]. Pattern recognition,2018,74:434-447.
[14]ZHU J,ROSSET S,TIBSHIRANI R,et al. 1-norm support vector machines[C]//Advances in neural information processing systems. Vancouver,Canada:MIT Press,2003:49-56.
[15]WANG L,SHEN X,ZHENG Y F. On L1-norm multi-class support vector machines[C]//International conference on machine learning and applications. Orlando,USA:IEEE Computer Society,2006:83-88.
[16]KUJALA J,AHO T,ELOMAA T. A walk from 2-norm SVM to 1-norm SVM[C]//Ninth IEEE international conference on data mining. Miami,USA:IEEE Computer Society,2009:836-841.
[17]杨绪兵,顾一凡,陈松灿,等. L1投影的解析计算方法[J]. 南京大学学报(自然科学版),2017,53(3):476-482.
[18]杨绪兵,王一雄,陈斌. 马氏度量学习中的几个关键问题研究及几何解释[J]. 南京大学学报(自然科学版),2013,49(2):133-141.
[19]YEN E H,ZHONG K,HSIEH C J,et al. Sparse linear programming via primal and dual augmented coordinate descent[C]//International conference on neural information processing systems. Montreal,Canada:MIT Press,2015:2368-2376.
相似文献/References:
[1]朱志宾,丁世飞.基于TWSVM的图像分类[J].南京师范大学学报(自然科学版),2014,37(03):8.
Zhu Zhibin,Ding Shifei.Image Classification Based on Twin Support Vector Machines[J].Journal of Nanjing Normal University(Natural Science Edition),2014,37(04):8.
[2]王 征,李皓月,许洪山,等.基于卷积神经网络和SVM的中国画情感分类[J].南京师范大学学报(自然科学版),2017,40(03):74.[doi:10.3969/j.issn.1001-4616.2017.03.011]
Wang Zheng,Li Haoyue,Xu Hongshan,et al.Chinese Painting Emotion Classification Based onConvolution Neural Network and SVM[J].Journal of Nanjing Normal University(Natural Science Edition),2017,40(04):74.[doi:10.3969/j.issn.1001-4616.2017.03.011]
[3]汤嘉立,朱广萍,杜卓明.支持向量机多特征分类学习的超分辨率复原[J].南京师范大学学报(自然科学版),2018,41(03):28.[doi:10.3969/j.issn.1001-4616.2018.03.005]
Tang Jiali,Zhu Guangping,Du Zhuoming.Super-resolution Restoration Algorithm Based onSVM Multi-figure Classification Learning[J].Journal of Nanjing Normal University(Natural Science Edition),2018,41(04):28.[doi:10.3969/j.issn.1001-4616.2018.03.005]