[1]张 舒,王成强,李 强,等.在线社会网络环境下基于朋友圈的推荐[J].南京师范大学学报(自然科学版),2018,41(04):72.[doi:10.3969/j.issn.1001-4616.2018.04.012]
 Zhang Shu,Wang Chengqiang,LI Qiang,et al.Circle-based Recommendation in Online Social Networks[J].Journal of Nanjing Normal University(Natural Science Edition),2018,41(04):72.[doi:10.3969/j.issn.1001-4616.2018.04.012]
点击复制

在线社会网络环境下基于朋友圈的推荐()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第41卷
期数:
2018年04期
页码:
72
栏目:
·数学与计算机科学·
出版日期:
2018-12-31

文章信息/Info

Title:
Circle-based Recommendation in Online Social Networks
文章编号:
1001-4616(2018)04-0072-07
作者:
张 舒1王成强1李 强1李 慧2
(1.淮海工学院商学院,江苏 连云港 222005)(2.淮海工学院计算机工程学院,江苏 连云港 222005)
Author(s):
Zhang Shu1Wang Chengqiang1LI Qiang1LI Hui2
(1.School of Business,Huaihai Institute of Technology,Lianyungang 222005,China)(2.Department of Computer Science,Huaihai Institute of Technology,Lianyungang 222005,China)
关键词:
在线社交网络评分推荐系统信任朋友圈
Keywords:
online social networksrecommender systemstrustcircle
分类号:
TP391
DOI:
10.3969/j.issn.1001-4616.2018.04.012
文献标志码:
A
摘要:
在线社交网络信息的主要作用是提高推荐系统的精度,但仅仅依靠传统的评分推荐系统(RS)是无法实现的. 现在,为了更好地为用户在各活动中提供服务,许多在线社交软件支持一种称为“朋友圈”的新功能,该功能对“朋友”重新进行了定义. 论文提出了一种基于朋友圈的推荐系统. 该推荐系统旨在处理可用的评分数据并结合社交网络数据推断出特定类别领域的社会信任圈子. 主要根据系统预测出的专业水平对圈内朋友划分不同的等级. 通过对公开的数据进行验证实验,验证了本文所提出的基于朋友圈的推荐模型可以更好地利用用户的社会信任信息,从而有效地提高推荐系统的准确性.
Abstract:
Online social network information promises to increase recommendation accuracy beyond the capabilities of purely rating/feedback-driven recommender systems(RS). As to better serve users’ activities across different domains,many online social networks now support a new feature of“Friends Circles”,which refines the domain-oblivious“Friends”concept. RS should also benefit from domain-specific“Trust Circles”. This paper presents an effort to develop circle-based RS. We focus on inferring category-specific social trust circles from available rating data combined with social network data. We outline several variants of weighting friends within circles based on their inferred expertise levels. Through experiments on publicly available data,we demonstrate that the proposed circle-based recommendation models can better utilize user’s social trust information,resulting in increased recommendation accuracy.

参考文献/References:

[1] ZHANG D,HSU C H,CHEN M,et al. Cold-start recommendation using bi-clustering and fusion for large-scale social recommender systems[J]. IEEE transactions on emerging topics in computing,2017,2(2):239-250.
[2]WU H,YUE K,PEI Y,et al. Collaborative topic regression with social trust ensemble for recommendation in social media systems[J]. Knowledge-based systems,2016,97(C):111-122.
[3]ZHAO Z L,WANG C D,WAN Y Y,et al. FTMF:Recommendation in social network with Feature Transfer and Probabilistic Matrix Factorization[C]//International Joint Conference on Neural Networks. New York,USA:IEEE,2016.
[4]GOHARI F S,HAGHIGHI H,ALIEE F S. A semantic-enhanced trust based recommender system using ant colony optimization[M]. Holland:Kluwer Academic Publishers,2017.
[5]ROY S B,THIRUMURUGANATHAN S,AMER Y S,et al. Exploiting group recommendation functions for flexible preferences[C]//IEEE,International Conference on Data Engineering. USA:IEEE,2016:412-423.
[6]FANG A. Examining information on social media:topic modelling,trend prediction and community classification[C]//International ACM SIGIR conference on Research and Development in Information Retrieval. USA:ACM,2017.
[7]CREMONESI P,GARZOTTO F,NEGRO S,et al. Looking for“good”recommendations:a comparative evaluation of recommender systems[C]//Human-Computer Interaction-INTERACT 2011-,Ifip Tc 13 International Conference,Lisbon,Portugal,September 5-9,2011,Proceedings. Germany:DBLP,2017.
[8]AGGARWAL C C. An introduction to recommender systems[M]//Recommender Systems. Germany:Springer International Publishing,2016.
[9]ZIBA M,TOMCZAK J M,GONCZAREK A. RBM-SMOTE:restricted boltzmann machines for synthetic minority oversampling technique[C]//Asian Conference on Intelligent Information and Database Systems. Germany:Springer International Publishing,2015:377-386.
[10]KUMAR V,PUJARI A K,SAHU S K,et al. Collaborative filtering using multiple binary maximum margin matrix factorizations[J]. Information sciences,2017,380(C):1-11.
[11]WONG T L,LAM W,XIE H,et al. A joint framework for collaborative filtering and metric learning[J]. Lecture notes in computer science,2016:184-196.
[12]YIN G S,ZHANG Y N,DONG Y X,et al. A constrained trust recommendation using probabilistic matrix factorization[J]. Acta Electronics Sinica,2014,42(5):904-911.
[13]MA H,YANG H,LYU M R,et al. SoRec:social recommendation using probabilistic matrix factorization[C]//Acm Conference on Information & Knowledge Management. USA:ACM,2008:931-940.
[14]MA H,KING I,LYU M R. Learning to recommend with social trust ensemble[C]//International ACM SIGIR Conference on Research and Development in Information Retrieval. USA:ACM,2009:203-210.
[15]JAMALI M,ESTER M. A matrix factorization technique with trust propagation for recommendation in social networks[C]//ACM Conference on Recommender Systems. USA:ACM,2010:135-142.

备注/Memo

备注/Memo:
收稿日期:2018-05-10.
基金项目:国家自然科学基金(61403156、61403155)、连云港市科技计划项目(JC1608、CG1611)、淮海工学院自然基金项目(Z2017012、Z2015012)、淮海工学院教学改革项目(XJG2017-2-5)、教育部协同育人项目(201702134005、201701028110).
通讯联系人:李慧,博士,副教授,研究方向:数据挖掘,智能信息处理. E-mail:shufanzs@126.com
更新日期/Last Update: 2018-12-30