[1]李德才,史丽妍,魏俊潮.EP元与方程的解[J].南京师范大学学报(自然科学版),2019,42(01):20.[doi:10.3969/j.issn.1001-4616.2019.01.004]
 Li Decai,Shi Liyan,Wei Junchao.EP Elements and Solutions of Equations[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(01):20.[doi:10.3969/j.issn.1001-4616.2019.01.004]
点击复制

EP元与方程的解()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第42卷
期数:
2019年01期
页码:
20
栏目:
·数学·
出版日期:
2019-03-20

文章信息/Info

Title:
EP Elements and Solutions of Equations
文章编号:
1001-4616(2019)01-0020-03
作者:
李德才12史丽妍1魏俊潮1
(1.扬州大学数学科学学院,江苏 扬州 225002)(2.扬州市职业大学科技处,江苏 扬州 225009)
Author(s):
Li Decai12Shi Liyan1Wei Junchao2
(1.School of Mathematical Science,Yangzhou University,Yangzhou 225002,China)(2.Science and Technology Department,Yangzhou Polytechnic College,Yangzhou 225009,China)
关键词:
*-环群可逆元Moore-Penrose可逆元EP元方程的解
Keywords:
*-ringgroup invertible elementMoore-Penrose invertible elementEP elementthe solutions of equation
分类号:
O153; O154
DOI:
10.3969/j.issn.1001-4616.2019.01.004
文献标志码:
A
摘要:
证明了如下结论:设a∈R#∩R+,则1)a∈REP当且仅当方程axa*=a*xa在χa中有解; 2)a∈REP当且仅当方程a#xa*=a+xa*在χa中至少有两个解,其中χa={a,a#,a+,a*,(a#)*,(a+)*}.
Abstract:
In this paper,some characterizations of EP elements are given. The main results are as follows:let a∈R#∩R+. then 1)a∈REP if and only if the equation axa*=a*xa has at least one solution in χa; 2)a∈REP if and only if the equation a#xa*=a+xa* has at least two solutions in χa,where χa={a,a#,a+,a*,(a#)*,(a+)*}.

参考文献/References:

[1] BEN-ISRAEL A,GREVILLE T N E. Generalized inverses:theory and applications[M]. 2nd ed. New York:Springer,2003.
[2]MOSIC D,DJORDJEVIC D S. Partial isometries and EP elements in rings with involution[J]. Eletron J linear algebra,2009,18(4):761-772.
[3]KOLIHA J J. The Drazin and Moore-Penrose inverse in p>*- algebra[J]. Math Proc R Ir Acad Ser A,1999,99(1):17-27.
[4]DJORDJEVIC D S. Products of EP operators on Hilbert spaces[J]. Proc Amer Math Soc,2000,129(6):1727-1731.
[5]KOLIHA J J,PATRICIO P. Elements of rings with equal spectral idempotents[J]. J Austr Math Soc,2002,72(1):137-152.
[6]LESNJAK G. Semigroups of EP linear transformations[J]. Linear Algebra Appl,2000,304(1):109-118.
[7]MOSIC D,DJORDJEVIC D S. Further results on partial isometries and EP elements in rings with involution[J]. Math Comput modelling,2011,54(3):460-465.
[8]CHEN W X. On EP elements,normal elements and partial isometries in rings with involution[J]. Electron J linear Algebra,2012,23(3):553-561.
[9]MOSIC D,DJORDJEVIC D S,KOLIHA J J. EP elements in rings[J]. Linear Algebra Appl,2009,431(4):527-535.
[10]CHENG S,TIAN Y. Two sets of new characterizations for normal and EP matrices[J]. Linear Algebra Appl,2003,375(2):181-195.
[11]DJORDJEVIC D S. Characterization of normal,hyponormal and EP operators[J]. J Math Anal Appl,2007,329(2):1181-1190.
[12]DJORDJEVIC D S,KOLIHA J J. Characterizing Hermitian,normal and EP operators[J]. Filomat,2007,21(1):39-54.

备注/Memo

备注/Memo:
收稿日期:2018-07-15.
基金项目:国家自然科学基金(11471282).
通讯联系人:李德才,教授,研究方向:hopf代数. E-mail:decailee@163.com
更新日期/Last Update: 2019-03-30