[1]朱 红,何瀚志,方谦昊,等.面向医学图像分割的蚁群密度峰值聚类[J].南京师范大学学报(自然科学版),2019,42(02):1-8.[doi:10.3969/j.issn.1001-4616.2019.02.001]
 Zhu Hong,He Hanzhi,Fang Qianhao,et al.Ant Colony Algorithm and Density Peaks Clustering forMedical Image Segmentation[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(02):1-8.[doi:10.3969/j.issn.1001-4616.2019.02.001]
点击复制

面向医学图像分割的蚁群密度峰值聚类()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第42卷
期数:
2019年02期
页码:
1-8
栏目:
·数学与计算机科学·
出版日期:
2019-06-30

文章信息/Info

Title:
Ant Colony Algorithm and Density Peaks Clustering forMedical Image Segmentation
文章编号:
1001-4616(2019)02-0001-08
作者:
朱 红1何瀚志1方谦昊1代 岳2姜代红3
(1.徐州医科大学医学信息学院,江苏 徐州 221004)(2.徐州医科大学附属医院影像科,江苏 徐州 221002)(3.徐州工程学院信电工程学院,江苏 徐州 221008)
Author(s):
Zhu Hong1He Hanzhi1Fang Qianhao1Dai Yue2Jiang Daihong3
(1.School of Medical Information,Xuzhou Medical University,Xuzhou 221004,China)(2.Radiology Department,The Affiliated Hospital of Xuzhou Medical University,Xuzhou 221002,China)(3.School of Information and Electrical Engineering,Xuzhou Institute of Technology,Xuzhou 221008,China)
关键词:
医学图像分割密度峰值聚类中心蚁群算法信息素
Keywords:
medical image segmentationdensity peakscluster centersant colony algorithmpheromone
分类号:
TP18
DOI:
10.3969/j.issn.1001-4616.2019.02.001
文献标志码:
A
摘要:
在医学图像分割研究中,针对密度峰值聚类算法(density peaks clustering algorithm,DPC),依靠先验知识给定截断距离dc且人工选择聚类中心点具有主观随意性等缺陷,提出了一种结合蚁群算法选取密度峰值聚类最优参数的医学图像分割方法. 该算法首先利用蚁群算法全局性和鲁棒性的优点,使用图像熵计算信息素来指导蚁群的搜索路径; 再使用变量量化表示聚类中心个数,蚁群通过迭代选择最优截断距离dc和聚类中心,实现了DPC算法的自适应分割并得到了较好的分割效果. 仿真实验分析证明了算法的有效性和实用性.
Abstract:
In the medical image segmentation research,a medical image segmentation method based on ant colony algorithm for selecting the optimal parameters of density peaks clustering(DPC)was proposed. For some defects in DPC algorithm,such as cut-off distance dc was given by DPC algorithm relied on prior knowledge,subjective randomness in cluster centers was selected by manual work. First,the algorithm took advantages of the overall robustness of the ant colony algorithm,used image entropy to calculate pheromone to guide the search path of ant colony. Then it was quantified the number of cluster centers by using variable quantification instead,and ant colony selected the optimal truncation distance dc and cluster centers by iteration,and realized the adaptive segmentation of DPC algorithm and obtained better results. Simulation experiments proved the effectiveness and practicability of this algorithm.

参考文献/References:

[1] SHRIVASTAVA K,GUPTA N,SHARMA N. Medical image segmentation using modified K-means clustering[J]. Journal of gerontological nursing,2014,24(1):54.
[2]YADAV H,BANSAL P,SUNKARIA R K. Color dependent K-means clustering for color image segmentation of colored medical images[C]//2015 First International Conference on Next Generation Computing Technologies. Dehardun,India:IEEE,2016:858-862.
[3]ZHOU N,YANG T,ZHANG S. An improved FCM medical image segmentation algorithm based on MMTD[J]. Computational and mathematical methods in medicine,2014(1):690349.
[4]唐文静,许兆新,张小峰. 峰值检测FCM算法的医学图像分割[J]. 智能系统学报,2014(5):584-589.
[5]ZHU H,XU J,HU J,et al. Medical image segmentation using improved affinity propagation[C]//Fifth International Symposium Computational Modeling of Objects Represented in Images. Niagrara Falls NY,USA:Springer,Cham,2016:208-215.
[6]RODRIGUEZ A,LAIO A. Clustering by fast search and find of density peaks[J]. Science,2014,344(6191):1492-1496.
[7]杨光. 基于密度峰值聚类的前列腺KVCT图像3D分割[D]. 西安:西安电子科技大学,2015.
[8]杨悦,刘向阳. 基于局部空间密度峰值的图像分割算法[J]. 信息技术,2017(9):84-87.
[9]王泽,张宏军,张睿,等. 基于遗传算法与密度及距离计算的聚类方法[J]. 计算机应用,2015,35(11):3243-3246.
[10]DENG S L,CHEN W D. K-means clustering for color image segmentation of colored medical images[C]//2015 First International Conference on Next Generation Computing Technologies. Dehardun,India:IEEE,2016:858-862.
[11]杨志,罗可. 一种改进的基于粒子群的聚类算法[J]. 计算机应用研究,2014,31(9):2597-2599.
[12]ZHANG Z,YUE B,PAN Q,et al. Image segmentation algorithm of fuzzy clustering based on ant colony and adaptive filtering[J]. Application of electronic technique,2015,41(4):144-147.
[13]YANG J,TAN W,MA S,et al. Automatic MRI brain tissue extraction algorithm based on three-dimensional gray-scale transformation model[J]. Journal of medical imaging and health informatics,2014,4(6):907-911.
[14]JENG J H,HSU S L,CHANG Y. Entropy improvement for fractal image coder[J]. International Arab journal of information technology,2012,9(5):403-410.
[15]GUI Y,LIN D,LIANG S,et al. A coarse-to-fine horizon detection method based on between-class variance[C]//Ninth International Symposium on Computational Intelligence and Design. Hangzhou,China:IEEE,2017:376-380.

备注/Memo

备注/Memo:
收稿日期:2018-10-15.
基金项目:国家自然科学基金项目(61672522)、江苏省高等学校自然科学研究重大项目(18KJA520012)、徐州市科技计划项目(KC16SQ78).
通讯联系人:朱红,博士,教授,研究方向:人工智能、医学图像处理、机器学习、粒度计算. E-mail:zhuhongwin@126.com
更新日期/Last Update: 2019-06-30