[1]尤鸣宇,韩 煊.基于样本扩充的小样本车牌识别[J].南京师范大学学报(自然科学版),2019,42(03):1-10.[doi:10.3969/j.issn.1001-4616.2019.03.001]
 You Mingyu,Han Xuan.Small Sample License Plate Recognition Based on Sample Expansion[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(03):1-10.[doi:10.3969/j.issn.1001-4616.2019.03.001]
点击复制

基于样本扩充的小样本车牌识别()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第42卷
期数:
2019年03期
页码:
1-10
栏目:
·全国机器学习会议论文专栏·
出版日期:
2019-09-30

文章信息/Info

Title:
Small Sample License Plate Recognition Based on Sample Expansion
文章编号:
1001-4616(2019)03-0001-10
作者:
尤鸣宇韩 煊
同济大学电子与信息工程学院,上海 201804
Author(s):
You MingyuHan Xuan
College of Electronics and Information Engineering,Tongji University,Shanghai 201804,China
关键词:
小样本车牌识别生成对抗网络卷积神经网络双向循环神经网络
Keywords:
license plate recognition with small datasetgenerative adversarial networkconvolutional neural networkbidirectional recurrent neural network
分类号:
TP391
DOI:
10.3969/j.issn.1001-4616.2019.03.001
文献标志码:
A
摘要:
车牌识别技术作为智能交通系统的核心课题之一,一直受到广泛的关注. 近年来深度学习技术的迅速发展,更是为其提供了一种良好的解决方案. 但实际场景下,研究者有时很难收集到足够的数据以支持模型训练. 本文聚焦于小样本车牌识别问题,提出了使用生成对抗网络生成车牌图像,辅助后续模型训练的方法. 本文方法先使用CycleWGAN合成大量带标签车牌图像; 之后用合成图像对识别模型进行预训练; 最后使用原始真实数据微调模型,进一步提高模型的准确率. 本文在多个数据集上验证此方法,均获得了明显的效果增益,特别是当真实数据相对有限时,本文方法将准确率从已经较高的基线上又提升了7.5%. 另外,在较困难的双动态车牌图像上,本文方法也取得了不俗的效果. 最后,引入模型压缩技术,在原方法的基础上设计并实现了LightRCNN,使识别速度提升近1倍.
Abstract:
As one of the significant topics of intelligent transportation system,license plate recognition technology has been widely studied. In recent years,the rapid development of deep learning has provided a good solution for it. However,in actual situations,it is difficult for researchers to collect enough data to support the training of the model sometimes. This paper focuses on the license plate recognition with small amount of data,and proposes a method to generate training data with adversarial generation network to assist the recognition model training. First,a large-scale image set is generated using the generator of GAN. Then,these images are fed to a deep convolutional neural network followed by a bidirectional recurrent neural network with long short-term memory,which performs the feature learning and sequence labelling. Finally,the pre-trained model is fine-tuned on real images. Our experimental results on a few data sets demonstrate the effectiveness of using GAN images:an improvement of 7.5 recognition accuracy percent points over a strong baseline with moderate-sized real data being available. The proposed framework achieves competitive recognition accuracy on challenging test datasets. This paper also leverages the depthwise separate convolution to construct a lightweight convolutional recurrent neural network,which is about half size and 2×faster on CPU. Combining this framework and the proposed pipeline,this paper makes progress in performing accurate recognition on mobile and embedded devices.

参考文献/References:

[1] LI H,SHEN C. Reading car license plates using deep convolutional neural networks and LSTMs[EB/OL]. [2019-06-01]. https://arxiv.org/abs/1601.05610v1.
[2]SHI B,BAI X,YAO C. An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition[J]. IEEE transactions on pattern analysis and machine intelligence,2017,39(11):2298-2304.
[3]ZHU J Y,PARK T,ISOLA P,et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice:IEEE Computer Society,2017:2223-2232.
[4]GOU C,WANG K,YAO Y,et al. Vehicle license plate recognition based on extremal regions and restricted Boltzmann machines[J]. IEEE transactions on intelligent transportation systems,2016,17(4):1096-1107.
[5]SHIN H C,TENENHOLTZ N A,ROGERS J K,et al. Medical image synthesis for data augmentation and anonymization using generative adversarial networks[C]//International Workshop on Simulation and Synthesis in Medical Imaging. Berlin:Springer,2018.
[6]NOMURA S,YAMANAKA K,KATAI O,et al. A novel adaptive morphological approach for degraded character image segmentation[J]. Pattern recognition,2005,38(11):1961-1975.
[7]SARFRAZ M,AHMED M J. Exploring critical approaches of evolutionary computation:an approach to license plate recognition system using neural network[M]. Hershey:IGI Global,2019:20-36.
[8]JIAO J,YE Q,HUANG Q. A configurable method for multi-style license plate recognition[J]. Pattern recognition,2009,42(3):358-369.
[9]NAIR A S,RAJU S,HARIKRISHNAN K J,et al. A survey of techniques for license plate detection and recognition[J]. Imanager’s journal on image processing,2018,5(1):25.
[10]WELANDER P,KARLSSON S,EKLUND A. Generative adversarial networks for image-to-image translation on multi-contrast MR images:a comparison of CycleGAN and UNIT[EB/OL]. [2019-06-01]. https://arxiv.org/abs/1806.07777.
[11]LLORENS D,MARZAL A,PALAZóN V,et al. Car license plates extraction and recognition based on connected components analysis and HMM decoding[C]//Iberian Conference on Pattern Recognition and Image Analysis. Berlin:Springer,2005:571-578.
[12]WEN Y,LU Y,YAN J,et al. An algorithm for license plate recognition applied to intelligent transportation system[J]. IEEE transactions on intelligent transportation systems,2011,12(3):830-845.
[13]TAO D,LIN X,JIN L,et al. Principal component 2-D long short-term memory for font recognition on single Chinese characters[J]. IEEE transactions on cybernetics,2016,46(3):756-765.
[14]GOODFELLOW I,POUGET A J,MIRZA M,et al. Generative adversarial nets[J]. Advances in neural information processing systems,2014,27:2672-2680.
[15]RADFORD A,METZ L,CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL]. [2019-06-01]. https://arxiv.org/abs/1511.06434.
[16]REED S,AKATA Z,YAN X,et al. Generative adversarial text to image synthesis[EB/OL]. [2019-06-01]. https://arxiv.org/abs/1605.05396.
[17]ISOLA P,ZHU J Y,ZHOU T,et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hawaii:IEEE Computer Society,2017:1125-1134.
[18]ARJOVSKY M,CHINTALA S,BOTTOU L. Wasserstein generative adversarial networks[J]. Proceedings of machine learning research,2017,70:214-223.
[19]PATHAK D,KRAHENBUHL P,DONAHUE J,et al. Context encoders:feature learning by inpainting[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas:IEEE Computer Society,2016:2536-2544.
[20]SALIMANS T,GOODFELLOW I,ZAREMBA W,et al. Improved techniques for training gans[J]. Advances in neural information processing systems,2016,29:2234-2242.
[21]WU J,ZHANG C,XUE T,et al. Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling[J]. Advances in neural information processing systems,2016 29:82-90.
[22]GUPTA A,VEDALDI A,ZISSERMAN A. Synthetic data for text localisation in natural images[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas:IEEE Computer Society,2016:2315-2324.
[23]JADERBERG M,SIMONYAN K,VEDALDI A,et al. Synthetic data and artificial neural networks for natural scene text recognition[EB/OL]. [2019-06-01]. https://arxiv.org/abs/1406.2227.
[24]WANG Z,YANG J,JIN H,et al. Deepfont:identify your font from an image[C]//Proceedings of the 23rd ACM International Conference on Multimedia. Brisbane:ACM,2015:451-459.
[25]YU J,FARIN D,KRüGER C,et al. Improving person detection using synthetic training data[C]//2010 IEEE International Conference on Image Processing. Hong Kong:IEEE Computer Society,2010:3477-3480.
[26]ROS G,SELLART L,MATERZYNSKA J,et al. The synthia dataset:a large collection of synthetic images for semantic segmentation of urban scenes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas:IEEE Computer Society,2016:3234-3243.
[27]ZHENG Z,ZHENG L,YANG Y. Unlabeled samples generated by gan improve the person re-identification baseline in vitro[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice:IEEE Computer Society,2017:3754-3762.
[28]WEI Y,ZHAO Y,LU C,et al. Cross-modal retrieval with CNN visual features:a new baseline[J]. IEEE transactions on cybernetics,2017,47(2):449-460.
[29]GRAVES A,FERNáNDEZ S,GOMEZ F,et al. Connectionist temporal classification:labelling unsegmented sequence data with recurrent neural networks[C]//Proceedings of the 23rd International Conference on Machine Learning. Pittsburgh:ACM,2006:369-376.
[30]ZEILER M D. ADADELTA:an adaptive learning rate method[EB/OL]. [2019-06-01]. https://arxiv.org/abs/1212.5701.
[31]ABADI M,AGARWAL A,BARHAM P,et al. Tensorflow:large-scale machine learning on heterogeneous distributed systems[EB/OL]. [2019-06-01]. https://www.arxiv-vanity.com/papers/1603.04467/.
[32]LIU R,LI M. EasyPR[EB/OL]. [2019-06-01]. https://github.com/liuruoze/EasyPR.
[33]IM D J,KIM C D,JIANG H,et al. Generating images with recurrent adversarial networks[EB/OL]. [2019-06-01]. https://arxiv.org/abs/1602.05110.
[34]HINTON G,VINYALS O,DEAN J. Distilling the knowledge in a neural network[EB/OL]. [2019-06-01]. https://arxiv.org/abs/1503.02531.
[35]PEREYRA G,TUCKER G,CHOROWSKI J,et al. Regularizing neural networks by penalizing confident output distributions[EB/OL]. [2019-06-01]. https://arxiv.org/abs/1701.06548.
[36]SIFRE L,MALLAT S. Rigid-motion scattering for image classification[D]. Palaiseau:Ecole Polytechnique CMAP,2014.
[37]HOWARD A G,ZHU M,CHEN B,et al. Mobilenets:efficient convolutional neural networks for mobile vision applications[EB/OL]. [2019-06-01]. https://arxiv.org/abs/1704.04861.

相似文献/References:

[1]贾玉福,胡胜红,刘文平,等.使用条件生成对抗网络的自然图像增强方法[J].南京师范大学学报(自然科学版),2019,42(03):88.[doi:10.3969/j.issn.1001-4616.2019.03.012]
 Jia Yufu,Hu Shenghong,Liu Wenping,et al.Wild Image Enhancement with Conditional Generative Adversarial Network[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(03):88.[doi:10.3969/j.issn.1001-4616.2019.03.012]

备注/Memo

备注/Memo:
收稿日期:2019-07-05.基金项目:上海市自然科学基金(18ZR1442600). 通讯联系人:尤鸣宇,副教授,研究方向:模式识别与智能系统. E-mail:myyou@tongji.edu.cn
更新日期/Last Update: 2019-09-30