参考文献/References:
[1] WANG Z,BOVIK A C. Modern image quality assessment[M]. San Rafael,CA,USA:Morgan & Claypool,2006.
[2]WANG Z,BOVIK A C,SHEIKH H R,et al. Image quality assessment:from error visibility to structural similarity[J]. IEEE transactions on image processing,2004,13(4):600-612.
[3]ZHANG D,ZHANG L,MOU X Q,et al. FSIM:a feature similarity index for image quality assessment[J]. IEEE transactions on image processing,2011,20(8):2378-2386.
[4]SHEIKH H R,BOVIK A C. Image information and visual quality[J]. IEEE transactions on image processing,2006,15(2):430-444.
[5]HE L H,TAO D G,LI X L,et al. Sparse representation for blind image quality assessment[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Providence,Rhode Island,USA,2012:1146-1153.
[6]SHEIKH H R,BOVIK A C,CORMACK L. No-reference quality assessment using natural scene statistics:JPEG2000[J]. IEEE transactions on image processing,2005,14(11):1918-1927.
[7]KUNDU D,EVANS B L. Spatial domain synthetic scene statistics[C]//48th Asilomar Conference on Signals,Systems and Computers(Asilomar). Pacific Grove,California,USA,2014:948-954.
[8]TANG H X,NEEL J,ASHISH K. Blind image quality assessment using semi-supervised rectifier networks[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Columbus,Ohio,USA,2014:2877-2884.
[9]KANG L,YE P,LI Y,et al. Convolutional neural networks for no-reference image quality assessment[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Columbus,Ohio,USA,2014:1733-1740.
[10]KANG L,YE P,LI Y,et al. Simultaneous estimation of image quality and distortion via multi-task convolutional neural networks[C]//IEEE International Conference on Image Processing(ICIP). Quebec City,Canada,2015:2791-2795.
[11]KIM J,LEE S. Fully deep blind image quality predictor[J]. IEEE journal of selected topics in signal processing,2017,11(1):206-230.
[12]REN H Y,CHEN D Q,WANG Y Z. RAN4IQA:restorative adversarial nets for no-reference image quality assessment[C]//The Thirty-Second AAAI Conference on Artificial Intelligence(AAAI). New Orleans,Louisiana,USA,2018:7308-7314.
[13]BOSSE S,MANIRY D,MüLLER K,et al. Deep neural networks for no-reference and full-reference image quality assessment[J]. IEEE transactions on image processing,2018,27(1):206-219.
[14]KIM J,NGUYEN A,LEE S. Deep CNN-based blind image quality predictor[J]. IEEE transactions on neural networks and learning systems,2019,30(1):11-24.
[15]SHEIKH H R,WANG Z,CORMACK L,et al. Live image quality assessment database release 2(LIVE II)[DB/OL]. [2019-01-18]. http://live.ece.utexas.edu/research/quality.
[16]LARSON E C,CHANDLER D M. Categorical image quality(CSIQ)database[DB/OL]. [2019-01-18]. http://vision.okstate.edu/csiq.
[17]PONOMARENKO N,IEREMEIEV O,LUKIN V,et al. A new color image database TID2013:Innovations and Results[M]//Blanc-Talon J,Kasinski A,Philips W,et al. Advanced Concepts for Intelligent Vision Systems. Berlin,Heidelberg:Springer-Verlag,2013.
[18]VQEG. Validation of reduced-reference and no-reference objective models for standard definition television,Phase I[DB/OL]. [2019-01-18]. http://www.vqeg.org/.