参考文献/References:
[1] MIRJALILI S. Dragonfly algorithm:a new meta-heuristic optimization technique for solving single-objective,discrete,and multi-objective problems[J]. Neural computing & applications,2016,27(4):1053-1073.
[2]ABDEL B M,LUO Q F,MIAO H,et al. Solving 0-1 knapsack problems by binary dragonfly algorithm[C]//International Conference on Intelligent Computing. Liverpool:Springer,2017.
[3]THARWAT A,GABEL T,HASSANIEN A E. Parameter optimization of support vector machine using dragonfly algorithm[C]//Proceedings of the International Conference on Advanced Intelligent Systems and Informatics. Cairo:Springer,2017.
[4]赵齐辉,杜兆宏,刘升,等. 差分进化的蜻蜓算法[J]. 微电子学与计算,2018,35(7):101-105.
[5]吴伟民,吴汪洋,林志毅,等. 基于增强个体信息交流的蜻蜓算法[J]. 计算机工程与应用,2017,53(4):10-15.
[6]SREE R K S,MURUGAN S. Memory based hybrid dragonfly algorithm for numerical optimization problems[J]. Expert systems with applications,2017,83(1):63-78.
[7]韩鹏,陈锋. 一种改进的多目标蜻蜓优化算法[J]. 信息技术与网络安全,2017,36(30):27-31.
[8]VISWANATHAN G M,AFANASYEV V,BULDYREV S V,et al. Levy flight search patterns of wandering albatrosses[J]. Nature,1996,361(6581):413-415.
[9]TIZHOOSH H R. Opposition-based learning:a new scheme for machine intelligence[C]//Computational Intelligence for Modelling. Vienna:Computer society,2005.
[10]WEI W H,ZHOU J L,FANG C,et al. Constrained differential evolution using generalized opposition-based learning[J]. Acta electronica sinica,2016,20(11):4413-4437.
[11]ZHANG S,LUO Q F,ZHOU Y Q. Hybrid grey wolf optimizer using elite opposition-based learning strategy and simplex method[J]. International journal of computational intelligence and applications,2017,16(2):1-12.
[12]AHANDANI M A,ALAVI R H. Opposition-based learning in shuffled frog leaping:an application for parameter identify cation[J]. Information sciences,2015,291(291):19-42.
[13]赵挺,孟子航,沈海斌. 基于反向学习与Levy飞行的改进蜂群算法[J]. 传感器与微系统,2017,36(1):111-115.
[14]王李进,尹义龙,钟一文. 逐维改进的布谷鸟搜索算法[J]. 软件学报,2013,24(11):2687-2698.
[15]LIANG J J,QIN A K,SUGANTHAN P N,et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE transaction on evolutionary computation,2006,10(3):281-296.
[16]马骏,项铁铭. 一种基于佳点集原理与引力搜索的新型蜻蜓算法[J]. 软件导论,2018,12(1):85-89.
[17]范帅军.布谷鸟搜索算法的应用研究与改进[D]. 成都:西南交通大学. 2016.
[18]CAI Z F,YANG X D. Cuckoo search algorithm with deep search[C]//Proceedings of the 3rd IEEE International Conference on Computer and Communications(ICCC). Chengdu:IEEE Publications,2018.
[19]MIRJALILI S,HASHIMM S Z M. A new hybrid PSOGSA algorithm for function optimization[C]//2010 International Conference on Computer and Information Application(ICCIA). Tianjin:IEEE Publications,2010.