[1]李二超,马玉泉.基于快速二层解修补策略的区间离散遗传算法[J].南京师范大学学报(自然科学版),2019,42(03):73-79.[doi:10.3969/j.issn.1001-4616.2019.03.010]
 Li Erchao,Ma Yuquan.Interval Discrete Genetic Algorithms Based on FastTwo-Level Solution Repair Strategy[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(03):73-79.[doi:10.3969/j.issn.1001-4616.2019.03.010]
点击复制

基于快速二层解修补策略的区间离散遗传算法()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第42卷
期数:
2019年03期
页码:
73-79
栏目:
·全国机器学习会议论文专栏·
出版日期:
2019-09-30

文章信息/Info

Title:
Interval Discrete Genetic Algorithms Based on FastTwo-Level Solution Repair Strategy
文章编号:
1001-4616(2019)03-0073-07
作者:
李二超马玉泉
兰州理工大学电气工程与信息工程学院,甘肃 兰州 730050
Author(s):
Li ErchaoMa Yuquan
College of Electrical and Information Engineering,Lanzhou University of Technology,Lanzhou 730050,China
关键词:
多目标优化区间离散变量遗传算法快速二层解修补约束
Keywords:
multi-objective optimizationinterval discrete variablesgenetic algorithmfast two-level repairconstraints
分类号:
TP273
DOI:
10.3969/j.issn.1001-4616.2019.03.010
文献标志码:
A
摘要:
以等式约束下的区间离散多目标优化问题为研究对象,提出了快速二层解修补策略,其主要思想是:首先,用初始解生成器生成一个满足等式约束条件的种群,然后,将此种群中可修补个体以其违反约束度最小为目标函数,将落在未定义区间的个体修补至定义区间内,最后,在定义子区间内微调得到满足约束条件的个体,其调整方法如下:按照当前个体中的每个变量在其所处区间内的可调节上下限在此个体总的可调节上下限值内所占的比例进行调节,使得不满足等式约束的变量得到有效修补. 最后,通过实验验证了本文算法的有效性.
Abstract:
A fast two-level solution repair strategy is proposed for interval discrete multi-objective optimization problem with equality constraints. The main idea is:first,a population satisfying equality constraints is generated by using the initial solution generator,and then,the repairable individuals in this population are repaired to definitions by taking the minimum degree of violation of constraints as the objective function. In the interval,finally,the individual satisfying the constraints can be fine-tuned in the definition sub-interval. The adjusting method is as follows:according to the proportion of the upper and lower limits of each variable in the current individual in its interval,the variable that does not satisfy the equality constraints can be effectively repaired by adjusting the proportion of the upper and lower limits of the individual in the total adjustable upper and lower limits. Finally,the effectiveness of the proposed algorithm is verified by experiments.

参考文献/References:

[1] 侯伟. 基于多目标优化算法的动压滑动轴承设计[J]. 控制工程,2018,25(6):1044-1049.
[2]朱光宇,徐文婕. 考虑能耗与质量的机床构件生产线多目标柔性作业车间调度方法[J]. 控制与决策,2019,34(2):252-260.
[3]王嵘冰,徐红艳,郭军. 自适应的非支配排序遗传算法[J]. 控制与决策,2018,33(12):2191-2196.
[4]栗三一,李文静,乔俊飞. 一种基于密度的局部搜索NSGA2算法[J]. 控制与决策,2018,33(1):60-66.
[5]侯莹,韩红桂,乔俊飞. 基于参数动态调整的多目标差分进化算法[J]. 控制与决策,2017,32(11):1985-1990.
[6]郑金华. 多目标进化算法及其应用[M]. 北京:科学出版社,2007.
[7]BALRAM S. Study of simulated annelaling based algorithms for multi-objective optimization of constrained problem[J]. Computers and chemical engineering,2004,28:1849-1872.
[8]TAYSI N,GOGUS M T,OZAKEA M. Optimization of arches using genetic algorithm[J]. Computer Optim Appl,2008,41:378-383.
[9]刘松兵. 面向多目标优化的群智能算法研究[D]. 长沙:湖南大学,2009.
[10]贾婷芳,张学良. 离散多目标优化算法的研究[J]. 机械工程与自动化,2011,5:206-208.
[11]苏凯,刘吉臻,牛玉广,等. 一类解修补方法在厂级负荷优化分配中的应用[J]. 华北电力大学学报,2012,39(3):71-77.
[12]SUSHIL K R N. Nonconvex economic load dispatch using an efficient real-coded genetic algorithm[J]. Applied soft computing,2009,9(1):169-176.
[13]贾江涛,管晓宏,翟桥柱. 考虑水头影响的梯级水电站群短期优化调度[J]. 电力系统自动化,2009,33(13):7-13.
[14]BAUMRUCKER B T. Mathematical programs with equilibrium constraint(MPECs)in process systems engineering[D]. Pittsburgh:Carnegie Mellon University,2009:1-26.
[15]ZHI Q,LUO J S P,Daniel R. Mathematical programs with equilibrium constraints[M]. Cambridge:The Press Syndicate of the University of Cambridge,1996:5-16.

相似文献/References:

[1]李滢,童维勤,亢朝峰,等.基于QoS多目标优化的组合服务执行路径的选择[J].南京师范大学学报(自然科学版),2012,35(03):125.
 Li Ying,Tong Weiqing,Kang Chaofeng,et al.The QoS-Based Multi-Objective Optimization Algorithm of the Composite Service Execution Path[J].Journal of Nanjing Normal University(Natural Science Edition),2012,35(03):125.
[2]许 金,谷 琼,蔡之华,等.基于自适应ε占优的多目标差分演化算法[J].南京师范大学学报(自然科学版),2015,38(01):119.
 Xu Jin,Gu Qiong,Cai Zhihua,et al.Differential Evolution Algorithm for Multi-Objective OptimizationBased on Adaptive ε-Dominance[J].Journal of Nanjing Normal University(Natural Science Edition),2015,38(03):119.
[3]梁星星,马 扬,冯旸赫,等.面向多旅行商问题的多目标模拟退火算法研究[J].南京师范大学学报(自然科学版),2017,40(03):80.[doi:10.3969/j.issn.1001-4616.2017.03.012]
 Liang Xingxing,Ma Yang,Feng Yanghe,et al.Research on Multi-objective Simulated Annealing Algorithmfor Multi-traveling Salesman Problem[J].Journal of Nanjing Normal University(Natural Science Edition),2017,40(03):80.[doi:10.3969/j.issn.1001-4616.2017.03.012]

备注/Memo

备注/Memo:
收稿日期:2019-07-05.基金项目:国家自然科学基金(61763026、61403175). 通讯联系人:李二超,博士,副教授,研究方向:多目标优化. Email:lecstarr@163.com
更新日期/Last Update: 2019-09-30