[1]袁京洲,高 昊,周家特,等.基于树结构的层次性多示例多标记学习[J].南京师范大学学报(自然科学版),2019,42(03):80-87.[doi:10.3969/j.issn.1001-4616.2019.03.011]
 Yuan Jingzhou,Gao Hao,Zhou Jiate,et al.A Hierarchical Multi-Instance Multi-Label Learning forTree Structure Among Labels[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(03):80-87.[doi:10.3969/j.issn.1001-4616.2019.03.011]
点击复制

基于树结构的层次性多示例多标记学习()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第42卷
期数:
2019年03期
页码:
80-87
栏目:
·全国机器学习会议论文专栏·
出版日期:
2019-09-30

文章信息/Info

Title:
A Hierarchical Multi-Instance Multi-Label Learning forTree Structure Among Labels
文章编号:
1001-4616(2019)03-0080-08
作者:
袁京洲1高 昊1周家特1冯巧遇2吴建盛1
(1.南京邮电大学地理与生物信息学院,江苏 南京 210023)(2.南京邮电大学通信与信息工程学院,江苏 南京 210023)
Author(s):
Yuan Jingzhou1Gao Hao1Zhou Jiate1Feng Qiaoyu2Wu Jiansheng1
(1.School of Geographic and Biologic Information,Nanjing University of Posts and Telecommunications,Nanjing 210023,China)(2.College of Telecommunications and Information Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210023,China)
关键词:
层次性多示例多标记学习树结构G蛋白偶联受体生物学功能多示例学习
Keywords:
hierarchical multi-instance multi-label learningtree structureG protein-coupled receptorsbiological functionsmulti-instance leanring
分类号:
TP399
DOI:
10.3969/j.issn.1001-4616.2019.03.011
文献标志码:
A
摘要:
针对多示例多标记学习中标记间树结构的问题,将多示例学习、多标记学习和树结构标记优化方法有机融合,提出了基于树结构标记的层次性多示例多标记学习方法TreeMIML. TreeMIML先将样本中的多个示例转化为单示例,然后通过多标记学习得到新样本的标记,最后通过树结构标记优化方法学习样本的最终标记. 实验结果证明,TreeMIML方法在G蛋白偶联受体的生物学功能预测上获得了很好的分类性能,优于目前最好的多示例多标记学习和多标记学习方法.
Abstract:
This paper proposed a novel hierarchical multi-instance multi-label learning algorithm named TreeMIML to solve the challenge of tree structure among labels in multi-instance multi-label learning(MIML),by integrating multi-instance learning,multi-label learning and tree-structure optimization scheme. TreeMIML first converts multiple instances in each sample into single instance,then obtains sample outputs by multi-label learning,and finally optimizes the outputs to obtain the labels of unseen samples by a tree-structure optimization method. The experimental results show that our TreeMIML algorithm achieves good classification performance in predicting biological functions of G protein-coupled receptors,which is superior to state-of-the-art multi-instance multi-label learning and multi-label learning methods.

参考文献/References:

[1] ZHOU Z H,ZHANG M L,HUANG S J,et al. MIML:a framework for learning with ambiguous objects[EB/OL]. [2018-01-29]. https://arxiv.org/abs/0808.3231v1#.
[2]ZHOU Z H,ZHANG M L. Multi-instance multi-label learning with application to scene classification[C]//International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2006.
[3]ZHOU Z H,ZHANG M L,HUANG S J,et al. Multi-instance multi-label learning[J]. Artificial intelligence,2008,176(1):2291-2320.
[4]NGUYEN N. A new SVM approach to multi-instance multi-label learning[C]//IEEE International Conference on Data Mining. Sydney:IEEE,2011.
[5]ZHANG M L,ZHOU Z H. M3MIML:a maximum margin method for multi-instance multi-label learning[C]//Proceedings of the 8th IEEE International Conference on Data Mining(ICDM 2008). Pisa:IEEE,2008.
[6]ZHANG M L,ZHOU Z H. Multi-label learning by instance differentiation[C]//Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence. Vancouver:AAAI,2007.
[7]YANG S,ZHA H,HU B. Dirichlet-bernoulli alignment:a generative model for multi-class multi-label multi-instance corpora[J]. Advances in neural information processing systems,2009,22:2143-2150.
[8]JIN R,WANG S,ZHOU Z H. Learning a distance metric from multi-instance multi-label data[C]//IEEE Conference on Computer Vision & Pattern Recognition. Miami:IEEE,2010.
[9]BRIGGS F,FERN X Z,RAICH R. Rank-loss support instance machines for MIML instance annotation[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2012:534-542.
[10]LI Y F,HU J H,JIANG Y,et al. Towards discovering what patterns trigger what labels[C]//Twenty-Sixth AAAI Conference on Artificial Intelligence. Toronto,2012.
[11]SHENG J H,WEI G,ZHI H Z. Fast multi-instance multi-label learning[J]. IEEE transactions on pattern analysis and machine intelligence,2014,3:1868-1874.
[12]ZHA Z J,HUA X S,MEI T,et al. Joint multi-label multi-instance learning for image classification[C]//IEEE Conference on Computer Vision and Pattern Recognition. Anchorage:IEEE,2008.[13]XU X S,JIANG Y,XUE X,et al. Semi-supervised multi-instance multi-label learning for video annotation task[C]//Proceedings of the 20th ACM International Conference on Multimedia. Nara:ACM,2012.
[14]XU X S. Ensemble multi-instance multi-label learning approach for video annotation task[C]//Proceedings of the 19th International Conference on Multimedea. Scottsdale:DBLP,2011.
[15]LI Y X,JI S,KUMAR S,et al. Drosophila gene expression pattern annotation through multi-instance multi-label learning[C]//International Jont Conference on Artifical Intelligence. San Francisco:Morgan Kaufmann Publishers Inc,2009.
[16]WU J S,HUANG S J,ZHOU Z H. Genome-wide protein function prediction through multi-instance multi-label learning[J]. IEEE/ACM transactions on computational biology and bioinformatics,2014,11(5):891-902.
[17]WU J S,HU H F,YAN S C,et al. Multi-instance multilabel learning with weak-label for predicting protein function in electricigens[EB/OL]. [2018-01-29]. http://www.hindawi.com/journals/bmri/2015/619438/.
[18]SáNCHEZ J,PERRONNIN F,MENSINK T,et al. Image classification with the fisher vector:theory and practice[J]. International journal of computer vision,2013,105(3):222-245.
[19]PERRONNIN F,DANCE C. Fisher kernels on visual vocabularies for image categorization[C]//2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis:IEEE Computer Society,2007.
[20]ZHANG M L,ZHOU Z H. ML-KNN:a lazy learning approach to multi-label learning[J]. Pattern recognition,2007,40(7):2038-2048.
[21]BI W,KWOK J T. Multi-label classification on tree- and DAG-structured hierarchies[C]//Proceedings of the 28th International Conference on Machine Learning. Bellevue:ICML,2011.
[22]CAMON E,MAGRANE M,BARRELL D,et al. The gene ontology annotation(goa)database:sharing knowledge in uniprot with gene ontology[J]. Nucleic acids research,2004,32(Suppl 1):D262-D266.
[23]ZHANG M L,WANG Z J. MIMLRBF:RBF neural networks for multi-instance multi-label learning[J]. Neurocomputing,2009,72(16/18):3951-3956.
[24]WARD J J,SODHI J S,MCGUFFIN L J,et al. Prediction and functional analysis of native disorder in proteins from the three kingdoms of life[J]. Journal of molecular biology,2004,337(3):635-645.
[25]TSOUMAKAS G,VLAHAVAS I. Random belsets:an ensemble method for multilabel classification[C]//European Conference on Machine Learning. Berlin,Heidelberg:Springer,2007.
[26]READ J,PFAHRINGER B,HOLMES G,et al. Classifier chains for multi-label classification[J]. Machine learning,2011,85(3):333.
[27]CHENG W,HüLLERMEIER E. Combining instance-based learning and logistic regression for multilabel classification[J]. Machine learning,2009,76(2/3):211-225.
[28]TANG L,RAJAN S,NARAYANAN V K. Large scale multi-label classification via metalabeler[C]//Proceedings of the 18th International Conference on World Wide Web. New York:ACM,2009.
[29]WEI X S,WU J,ZHOU Z H. Scalable algorithms for multi-instance learning[J]. IEEE transactions on neural networks and learning systems,2016,28(99):1-13.

备注/Memo

备注/Memo:
收稿日期:2019-07-05.基金项目:国家自然科学基金(61872198、81771478、61571233)、江苏省高校自然科学基金(18KJB416005)、江苏省高等学校自然科学研究项目(17KJA510003)、南京邮电大学科研基金(NY218092). 通讯联系人:吴建盛,副教授,研究方向:机器学习和生物信息学. E-mail:jansen@njupt.edu.cn
更新日期/Last Update: 2019-09-30