参考文献/References:
[1] 刘擎超. 基于集成学习的交通状态预报方法研究[D]. 南京:东南大学,2015.
[2]姚智胜. 基于实时数据的道路网短时交通流预测理论与方法研究[D]. 北京:北京交通大学,2007.
[3]赵亚萍,张和生,杨军,等. 基于最小二乘支持向量机的交通流量预测模型[J]. 北京交通大学学报(自然科学版),2011,35(2):114-117.
[4]欧阳俊. 基于多核混合支持向量机的城市短时交通预测[D]. 长沙:中南大学,2011.
[5]孙占全,潘景山,张赞军,等. 基于主成分分析与支持向量机结合的交通流预测[J]. 公路交通科技,2009,26(5):127-131.
[6]樊娜,赵祥模,戴明,等. 短时交通流预测模型[J]. 交通运输工程学报,2012,12(4):114-119.
[7]刘燕. 城市道路交通流状态辨识及决策方法研究[D]. 合肥:合肥工业大学,2011.
[8]杨兆升,王媛,管青. 基于支持向量机方法的短时交通流量预测方法[J]. 吉林大学学报(工学版),2006,36(6):881-884.
[9]韦凌翔,陈红,王永岗,等. 短时交通流量预测方法[J]. 山东交通学院学报,2017,25(3):22-29.
[10]YAN H,YE Q,ZHANG T,et al. Least squares twin bounded support vector machines based on L1-norm distance metric for classification[J]. Pattern recognition,2017,74:434-447.
[11]YAN H,YE Q,ZHANG T,et al. L1-norm GEPSVM classifier based on an effective iterative algorithm for classification[J]. Neural processing letters,2017,4:1-26.
[12]YE Q,YANG X,GAO S,et al. L1-norm distance minimization based fast robust twin support vector k-plane clustering[J]. IEEE transactions on neural networks and learning systems,2018,29(9):4494-4503.
[13]YAN R,YE Q,ZHANG L,et al. A feature selection method for projection twin support vector machine[J]. Neural processing letters,2018,47(1):21-38.
[14]MANGASARIAN O L,WILD E W. Multisurface proximal support vector machine classification via generalized eigenvalues[J]. IEEE transactions on pattern analysis and machine intelligence,2006,28(1):69-74.
[15]SHAO Y H,ZHANG C H,WANG X B,et al. Improvements on twin support vector machines[J]. IEEE transactions on neural networks,2011,22(6):962-968.
[16]CARRASCO M,L PEZ J,MALDONADO S. A multi-class SVM approach based on the L1-norm minimization of the distances between the reduced convex hulls[J]. Pattern recognition,2015,48(5):1598-1607.
[17]TOMAR D,AGARWAL S. Multiclass least squares twin support vector machine for pattern classification[J]. International journal of database theory and application,2015,8(6):285-302.
[18]XIAO C,NIE F,HUANG H,et al. Multi-class L2,1-norm support vector machine[C]//Proceedings of the IEEE International Conference on Data Mining. Vancouver,Canada:IEEE,2012:91-100.
[19]NIE F,WANG X,HUANG H. Multiclass capped Lp-norm SVM for robust classifications[C]//Proceedings of the AAAI Conference on Artificial Intelligence. San Francisco,USA,2017:1-7.
[20]DING S,ZHAO X,ZHANG J,et al. A review on multi-class TWSVM[J]. Artificial intelligence,2017,2:1-27.
[21]BRERETON R G,LLOYD G R. Support vector machines for classification and regression[J]. Analyst,2010,135(2):230-267.
[22]HUANG W,SHEN L. Weighted support vector regression algorithm based on data description[C]//Proceedings of the Isecs International Colloquium on Computing,Communication,Control,and Management. USA:IEEE Computer Society,Computer Engineering and Applications,2008:250-254.
[23]CHE J X. Support vector regression based on optimal training subset and adaptive particle swarm optimization algorithm[J]. Applied soft computing,2013,13(8):3473-3481.
[24]DIVYA,AGARWAL S. Weighted support vector regression approach for remote healthcare monitoring[C]//Proceedings of the International Conference on Recent Trends in Information Technology. Piscataway:IEEE Press,2011:969-974.
相似文献/References:
[1]赵文芳,林润生,唐 伟,等.基于深度学习的PM2.5短期预测模型[J].南京师范大学学报(自然科学版),2019,42(03):32.[doi:10.3969/j.issn.1001-4616.2019.03.005]
Zhao Wenfang,Lin Runsheng,Tang Wei,et al.Forecasting Model of Short-Term PM2.5 ConcentrationBased on Deep Learning[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(03):32.[doi:10.3969/j.issn.1001-4616.2019.03.005]
[2]梁星星,黄魁华,马 扬,等.周界防护的最优替换调度[J].南京师范大学学报(自然科学版),2019,42(03):52.[doi:10.3969/j.issn.1001-4616.2019.03.007]
Liang Xingxing,Huang Kuihua,Ma Yang,et al.Optimal Replacement Scheduling for Perimeter Guarding[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(03):52.[doi:10.3969/j.issn.1001-4616.2019.03.007]
[3]张旭辉,张 郴,李雅南,等.城市旅游餐饮体验的注意力机制模型建构——基于机器学习的网络文本深度挖掘[J].南京师范大学学报(自然科学版),2022,45(01):32.[doi:10.3969/j.issn.1001-4616.2022.01.006]
Zhang Xuhui,Zhang Chen,Li Yanan,et al.Construction of Attention Mechanism Model of Urban Tourism Catering Experience:Deep Mining of Online Text Based on Machine Learning[J].Journal of Nanjing Normal University(Natural Science Edition),2022,45(03):32.[doi:10.3969/j.issn.1001-4616.2022.01.006]
[4]项晓宇,朱敏捷,周灵刚,等.基于机器学习的短期规上行业工业增加值预测[J].南京师范大学学报(自然科学版),2023,46(02):99.[doi:10.3969/j.issn.1001-4616.2023.02.013]
Xiang Xiaoyu,Zhu Minjie,Zhou Linggang,et al.Short-Term Industrial Added Value Prediction of the Above-Scale Industry Based on Machine Learning[J].Journal of Nanjing Normal University(Natural Science Edition),2023,46(03):99.[doi:10.3969/j.issn.1001-4616.2023.02.013]
[5]赵宇奔,王鑫宁,李 崇.基于K-XGBoost融合模型的高校学生学情预测研究[J].南京师范大学学报(自然科学版),2023,46(03):89.[doi:10.3969/j.issn.1001-4616.2023.03.012]
Zhao Yuben,Wang Xingning,Li Chong.Research on Undergraduate Academic Prediction Based on K-XGBoost Fusion Model[J].Journal of Nanjing Normal University(Natural Science Edition),2023,46(03):89.[doi:10.3969/j.issn.1001-4616.2023.03.012]