参考文献/References:
[1] RUSSELL J C,MASIELLO R D,BOSE A. Power System Control Center Concepts[C]//Power Industry Computer Applications Conference. Minneapolis,Minnesota,USA:IEEE,2002.
[2]FUKUI C,KAWAKAMI J. An expert system for fault section estimation using information from protective relays and circuit breakers[J]. Power delivery IEEE transactions on,1986,1(4):83-90.
[3]DOBAKHSHARI A S,RANJBAR A M. A circuit approach to fault diagnosis in power systems by wide area measurement system[J]. European transactions on electrical power,2013,23(8):1272-1288.
[4]LEE H J,PARK D Y,AHN B S,et al. A fuzzy expert system for the integrated fault diagnosis[J]. IEEE transactions on power delivery,2000,15(2):833-838.
[5]RESHMILA S,DEVANATHAN R. Di-agnosis of power system failures using observer based discrete event system[C]//IEEE International Conference on Control,Measurement and Instrumentation. Kolkata,India,2016.
[6]赵伟,白晓民,丁剑,等. 基于协同式专家系统及多智能体技术的电网故障诊断方法[J]. 中国电机工程学报,2006(20):1-8.
[7]邓武,杨鑫华,赵慧敏,等. 粗糙集、神经网络和专家系统模型用于电力系统故障诊断[J]. 高电压技术,2009,35(7):1624-1628.
[8]李再华,白晓民,周子冠,等. 基于特征挖掘的电网故障诊断方法[J]. 中国电机工程学报,2010,30(10):16-22.
[9]凌子俊,胡超,唐军胜. 基于贝叶斯网络和粗糙集的电网故障诊断方法[J]. 科技视界,2014(31):79,109.
[10]宋功益,王晓茹,周曙. 基于贝叶斯网的电网多区域复杂故障诊断研究[J]. 电力系统保护与控制,2011,39(7):20-25,31.
[11]孙明蔚,童晓阳,刘新宇,等. 运用时序贝叶斯知识库的电网故障诊断方法[J]. 电网技术,2014,38(3):715-722.
[12]罗孝辉,童晓阳. 计及可信度的变结构贝叶斯网络电网故障诊断[J]. 电网技术,2015,39(9):2658-2664.
[13]韩迎春,童晓阳. 基于动态推理链的电网故障诊断方法[J]. 电网技术,2017,41(4):1315-1324.
[14]童晓阳,谢红涛,孙明蔚. 计及时序信息检查的分层模糊Petri网电网故障诊断模型[J]. 电力系统自动化,2013,37(6):63-68.
[15]BINH P T T,TUYEN N D. Fault diagnosis of power system using neural Petri net and fuzzy neural Petri net[C]//Power India Conference. IEEE,New Delhi,India,2006.
[16]谢敏,吴亚雄,黄庶,等. 基于有色自控Petri网的电网故障区域识别[J]. 电力系统保护与控制,2016,44(2):56-64.
[17]谢红涛,童晓阳. 基于分层模糊Petri网的电网故障综合诊断方法[J]. 电网技术,2012,36(1):246-252.
[18]刘同明,夏祖勋,解洪成. 信息融合技术及其应用[M]. 北京:国防工业出版社,1998:12-13.
[19]BEDWORTH M,O’BRIEN J. The Omnibus model:a new model of data fusion?[J]. Aerospace & electronic systems magazine IEEE,2009,15(4):30-36.
[20]韩迎春,童晓阳.利用时空电气量基于灰色关联度的电网故障诊断[J]. 电网技术,2017,41(2):581-588.
[21]JOTA P R S,ISLAM S M,WU T,et al. A class of hybrid intelligent system for fault diagnosis in electric power systems[J]. Neurocomputing,1998,23(1-3):207-224.
[22]刘晓琴,王大志,张翠玲,等. 基于模型预测和溯因推理网络的电网故障诊断方法[J]. 东北大学学报(自然科学版),2016,37(4):472-476,480.
[23]林霞,李瑶,李强,等. 基于多Agent的分层扩展电网故障信息融合处理系统[J]. 电力系统保护与控制,2016,44(21):129-137.
[24]陈哲,江晓燕,岑炳成,等. 基于多种算法融合的区域电网在线故障诊断[J/OL]. 电力系统及其自动化学报:1-7[2019-06-12].
[25]NOVELO A F,CUCARELLA E Q,MORENO E G,et al. Fault diagnosis of electric transmission lines using modular neural networks[J]. IEEE Latin America transactions,2016,14(8):3663-3668.
[26]THUKARAM D,KHINCHA H P,VIJAYNARA S H P. Artificial neural network and support vector Machine approach for locating faults in radial distribution systems[J]. IEEE transactions on power delivery,2005,20(2):710-721.
[27]WU Q L,ZHANG H J. A novel expertise-guided machine learning model for internal fault state diagnosis of power transformers[J].
[28]XIONG G J,SHI D Y,CHEN J F,et al. Divisional fault diagnosis of large-scale power systems based on radial basis function neural network and fuzzy integral[J]. Electric power systems research,2013,105:9-19.
[29]张应军,江永全,杨燕,等. 基于深度卷积神经网络的未知复合故障诊断[J]. 中国科技论文,2019(2):204-209.
[30]孙波,黄建波,陆洁,等. 基于小波SOM神经网络和多Agent系统的微电网故障诊断方法[J]. 舰船电子工程,2018,38(8):151-155,186.
[31]杨彦杰,毛亚峰,唐圣学,等. 基于RTDS和神经网络的光储微电网线路故障诊断[J]. 可再生能源,2018,36(7):1010-1016.
[32]KHOMFOI S,TOLBERT L M. Fault diagnosis system for a multilevel inverter using a neural network[C]//Conference of IEEE Industrial Electronics Society. Paris,France,2006.