[1]王丽娟,丁世飞.基于聚类核的核极速学习机[J].南京师范大学学报(自然科学版),2019,42(03):145-150.[doi:10.3969/j.issn.1001-4616.2019.03.019]
 Wang Lijuan,Ding Shifei.A Novel Extreme Learning Machine Based on Bagged Kernel[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(03):145-150.[doi:10.3969/j.issn.1001-4616.2019.03.019]
点击复制

基于聚类核的核极速学习机()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第42卷
期数:
2019年03期
页码:
145-150
栏目:
·全国机器学习会议论文专栏·
出版日期:
2019-09-30

文章信息/Info

Title:
A Novel Extreme Learning Machine Based on Bagged Kernel
文章编号:
1001-4616(2019)03-0145-06
作者:
王丽娟12丁世飞1
(1.中国矿业大学计算机科学与技术学院,江苏 徐州 221116)(2.徐州工业职业技术学院信息与电气工程学院,江苏 徐州 221140)
Author(s):
Wang Lijuan12Ding Shifei1
(1.School of Computer Science and Technology,China University of Mining and Technology,Xuzhou 221116,China)(2.School of Information and Electrical Engineering,Xuzhou College of Industrial Technology,Xuzhou 221140,China)
关键词:
极速学习机k均值聚类Bagged聚类核RBF核函数
Keywords:
ELMk-means clusteringBagged kernelRBF kernel function
分类号:
TP3
DOI:
10.3969/j.issn.1001-4616.2019.03.019
文献标志码:
A
摘要:
传统的神经网络学习算法(如BP算法)需要调整大量的网络参数,例如输入权值以及隐层单元的偏置,而极速学习机只需要设置网络的隐层节点个数,在算法执行过程中不需要调整网络的输入权值,便可以产生唯一的最优解,因此它具有学习速度快且泛化性能好的优点. 随着极速学习机的研究发展,核极速学习机的相关理论被提出. 核极速学习机是将核函数引入到极速学习机中,可以得到最小二乘解,具有更稳定的泛化性能. 本文在核极速学习机的基础上提出了一种基于Bagged聚类核的核极速学习机的分类方法,首先对已有的标记样本和所有的无标记样本采用多次k均值聚类,去构造Bagged聚类核,然后对Bagged聚类核和径向基核进行求和,最终用于核极速学习机的训练中. 与传统核极速学习机相比,本文提出的方法可以使用所有的无标记样本,从而尽可能地提高分类的准确率. 最后本文通过实验验证了方法的可行性.
Abstract:
The traditional neural network learning algorithm(BP algorithm)need to set a large amount of network training parameter,and prone to local optimal solution. Extreme learning machine(ELM)need to set the number of hidden layer nodes of networks,while execution of the algorithm does not need to adjust the network weights of the input and hidden element bias,and can produce the optimal solution,thus it has advantages of fast learning speed and good generalization capability. Extreme learning machine as a kind of machine learning method,with simple and easy to use,and effective single hidden layer feed forward neural network learning algorithm,caught the attention of more and more researchers. With the research and development of extreme learning machine,the theory of nuclear extreme learning machine has been continually raised. Nuclear ultimate learning machine is introduced to limit the kernel learning machine,with which you can get a least-squares optimization solution,a more stable,better generalization performance. We now put forward a novel extreme learning machine based on bagged kernel classification method. First of all,the existing tag samples and all unmarked samples use k-means clustering algorithm for many times to construct the bagged clustering nucleus. Then,bagged clustering nucleus and the radial basis calculate the sum,and eventually it is used in training and classification of extreme learning machine. Compared with the traditional extreme learning machine,the new algorithm can use all unmarked sample information,as much as possible to improve the classification accuracy,and further improve the running speed. Through the experimental data set,we verify the feasibility of the method.

参考文献/References:

[1] HUANG G B,ZHU Q Y,SIEW C K. Extreme learning machine:a new learning scheme of feed forward neural networks[C]//International Joint Conference on Neural Networks. Budapest,2004:985-990.
[2]HUANG G B,ZHU Q Y,SIEW C K. Extreme learning machine:theory and applications[J]. Neurocomputing,2006,70:489-501.
[3]VAPNIK V N. The nature of statistical learning theory[M]. New York:Springer,1995.
[4]孔怡青. 半监督学习及其应用研究[D]. 无锡:江南大学,2009.
[5]李小冬. 核极速学习机的理论与算法及其在图像处理中的应用[D]. 杭州:浙江大学,2014.
[6]邓万宇,郑庆华,陈琳,等. 神经网络极速学习方法研究[J]. 计算机学报,2010,33(2):279-287.
[7]ZHU Q Y,QIN A K,SUGANTHAN P N,et al. Evolutionary extreme learning machine[J]. Pattern recognition,2005,38(10):1759-1763.
[8]HUANG G B,ZHOU H M,DING X J,et al. Extreme learning machine for regression and multiclass classification[J]. IEEE transactions on systems,man,and cybernetics,part B:cybernetics,2012,42(2):513-529.
[9]HUANG G B,SIEW C K. Extreme learning machine with randomly assigned RBF kernels[J]. International journal of information technology,2005,11(1):16-24.
[10]丁世飞. 孪生支持向量机:算法、理论与拓展[M]. 北京:科学出版社,2017.
[11]Lü F,HAN M. Hyperspectral image classification based on multiple reduced kernel extreme learning machine[J]. International journal of machine learning and cybernetics,2019,https://doi.org/10.1007/s13042-019-00926-5.
[12]ZHANG J,DING S F,ZHANG N,et al. An incremental extreme learning machine based on deep feature embedded[J]. International journal of machine learning and cybernetics,2016,7(1):111-120.
[13]梁吉业,高嘉伟,常瑜. 半监督学习研究进展[J]. 山西大学学报(自然科学版),2009,32(4):528-534.
[14]DING S F,ZHANG J,XU X Z,et al. A wavelet extreme learning machine[J]. Neural computing and applications,2016,27(4):1033-1040.
[15]WANG H B,LIU X,SONG P,et al. Sensitive time series prediction using extreme learning machine[J]. International journal of machine learning and cybernetics,2019.(https://doi.org/10.1007/s13042-019-00924-7)
[16]WESTON J,LESLIE C,ZHOU D,et al. Semi-supervised protein classification using cluster kernels[C]//Advances in Neural Information Processing System 17(NIPS 2004). Vancouver,2004:595-602.
[17]DING S F,ZHANGY N,XU X Z. A novel extreme learning machine based on hybrid kernel function[J]. Journal of computers,2013,8(8):2110-2117.
[18]HUANG G,HUANG G B,SONG S G,et al. Trends in extreme learning machines:a review[J]. Neural networks,2015,61:32-48.
[19]HUANG G,SONG S G,JATINDER N D. Semi-supervised and unsupervised extreme learning machines[J]. IEEE transactions on cybernetics,2014,44(12):2405-2417.
[20]CHAPELLE O,WESTON J,SCHOLKOPF B. Cluster kernels for semi-supervised learning[C]//Advances in Neural Information Processing System 16(NIPS 2003). Vancouver,2003:601-608.

备注/Memo

备注/Memo:
收稿日期:2019-07-05.基金项目:国家自然科学基金项目(61672522、61379501). 通讯联系人:丁世飞,博士,教授,博导,研究方向:人工智能、机器学习、支持向量机等. E-mail:dingsf@cumt.edu.cn
更新日期/Last Update: 2019-09-30