[1]郭玉玲,黄建国.求解弹性振动方程的稳健C0P1-P3时空有限元方法[J].南京师范大学学报(自然科学版),2019,42(04):12-16.[doi:10.3969/j.issn.1001-4616.2019.04.002]
 Guo Yuling,Huang Jianguo.Time Finite ElementMethod for Elastic Vibration Problems[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(04):12-16.[doi:10.3969/j.issn.1001-4616.2019.04.002]
点击复制

求解弹性振动方程的稳健C0P1-P3时空有限元方法()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第42卷
期数:
2019年04期
页码:
12-16
栏目:
·数学与计算机科学·
出版日期:
2019-12-30

文章信息/Info

Title:
Time Finite ElementMethod for Elastic Vibration Problems
文章编号:
1001-4616(2019)04-0012-05
作者:
郭玉玲黄建国
上海交通大学 数学科学学院,上海 200240
Author(s):
Guo YulingHuang Jianguo
School of Mathematical Sciences,Shanghai Jiao Tong University,Shanghai 200240,China
关键词:
弹性振动方程时空有限元方法C0P1 DG方法P3-非协调有限元方法稳健性
Keywords:
elastic vibration equationsspace-time finite element methodC0P1 DG methodP3-nonconforming finite element methodrobustness
分类号:
O24
DOI:
10.3969/j.issn.1001-4616.2019.04.002
文献标志码:
A
摘要:
本文旨在构建一类稳健的C0P1-P3时空有限元方法求解弹性振动方程. 该方法在时间方向上采用C0P1 DG方法离散,在空间上采用P3-非协调有限元方法离散,进而得到相应的全离散格式. 数值试验结果验证了该方法的稳健性.
Abstract:
This paper devises a robust C0P1-P3 space-time finite element method for elastic vibration equations. The temporal discretization is obtained by the C0P1 DG method,and the spatial discretization is given by the P3-nonconforming element method,leading to a C0P1-P3 space-time fully discrete scheme for the problem. Numerical results demonstrate the robustness of the proposed method.

参考文献/References:

[1] CLOUGH R W,PENZIEN T. Dynamics of Structures[M]. 2nd Ed. New York:McGraw-Hill,Inc,1993.
[2]AJIT K M,SINGH S J. Deformation of Elastic Solids[M]. New York:Prentice-Hall,1991.
[3]LAI J,HUANG J,CHEN C. Vibration analysis of plane elasticity problems by the C0-continuous time stepping finite element method[J]. Appl Numer Math,2009,59:905-919.
[4]NEWMARK N M. A method of computation for structural dynamics[J]. J Eng Mech Div,1959,85:67-94.
[5]HUGHES T J R,HULBERT G. Space-time finite element methods for elastodynamics:formulations and error estimates[J]. Comput Methods Appl Mech Eng,1988,66:339-363.
[6]BABUKA I,SURI M. Locking effects in the finite element approximation of elasticity problems[J]. Numer Math,1992,62:439-463.
[7]FALK R. Nonconforming finite element methods for the equations of linear elasticity[J]. Math Comput,1991,57:529-529.
[8]VOGELIUS M. An analysis of the p-version of the finite element method for nearly incompressible materials[J]. Numer Math,1983,41:39-53.
[9]STENBERG R. A family of mixed finite elements for the elasticity problem[J]. Numer Math,1988,53:513-538.
[10]HUANG X,HUANG J. The compact discontinuous Galerkin method for nearly incompressible linear elasticity[J]. J Sci Comput,2013,56:291-318.
[11]CHEN G,XIE X. A robust weak Galerkin finite element method for linear elasticity with strong symmetric stresses[J]. Comput Methods Appl Math,2016,16:389-408.
[12]GUO Y,HUANG J. A robust finite element method for elastic vibration problems[J]. Comput Math Appl Mat,accepted.
[13]CROUZEIX M,RAVIART P A. Conforming and nonconforming finite element methods for solving the stationary Stokes equations I[J]. RAIRO Anal Numér,1973,7:33-75.
[14]ADAMS R A. Sobolev Spaces[M]. New York:Academic Press,1975.
[15]BRENNER S C,SCOTT L R. The Mathematical Theory of Finite Element Methods[M]. 2nd Ed. Berlin:Springer-Verlag,2002.
[16]郭玉玲. 几类二阶发展方程的高效算法及误差分析[D]. 上海:上海交通大学,2019.

备注/Memo

备注/Memo:
稿日期:2019-06-19.
基金项目:国家自然科学基金面上项目(11571237).
通讯联系人:郭玉玲,博士生,研究方向:科学计算. E-mail:guoyuling@sjtu.edu.cn
更新日期/Last Update: 2019-12-31