参考文献/References:
[1] GHAZIKHANI A,MONSEFI R,YAZDI H S. Ensemble of online neural networks for non-stationary and imbalanced data streams[J]. Neurocomputing 2013,122:535-544.
[2]CAO K Y,WANG G R,HAN D H,et al. An algorithm for classification over uncertain data based on extreme learning machine[J]. Neurocomputing,2016,174(Part A):194-202.
[3]CERVANTES J,LAMONT F G,CHAU A L,et al. Data selection based on decision tree for SVM classification on large datasets[J]. Applied soft computing,2015,37:787-798.
[4]KRANJC J,SMAILOVIC J,PODECAN V. learning for sentiment analysis on data streams:methodology and workflow implementation in the ClowdFlows platform[J]. Information processing & management,2015,51(2):187-203.
[5]RUTKOWSKI L,JAWORSKI M,DUDA P. Decision Trees in Data Stream Mining[M]//Stream Data Mining:Algorithms and Their Probabilistic Properties. Switzerland:Studies in Big Data,Springer Nature Switzerland AG 2020:37-50.
[6]COSTA V G T D,CARVALHO A C,JUNIOR S B. Strict very fast decision tree:a memory conservative algorithm for data stream mining[J]. Pattern Recognition Letters,2018,116:22-28.
[7]丁剑,韩萌,李娟. 概念漂移数据流挖掘算法综述[J]. 计算机科学,2016,43(12):24-29.
[8]MOHAMED M G,ARKADY Z,SHONALI K. A survey of classication methods in data streams[J]. Springer U,2007,43(2):39-59.
[9]BRZEZINSKI D,STEFANOWSKI J. Combining block-based and online methods in learning ensembles from concept drifting data streams[J]. Information sciences,2014,265(5):50-67.
[10]ABBASZADEH O,AMIRI A,KHANTEYMOORL A R. An ensemble method for data stream classification in the presence of concept drift[J]. Front inform technol electron Eng,2015,16(12):1059-1068.
[11]RUTKOWSKI L,JAWORSKI M,PIETRUCZUK L,et al. A new method for data stream mining based on the misclassification error[J]. IEEE transactions on neural networks & learning systems,2015,26(5):1048-1059.
[12]RUTKOWSKI L,JAWORSKI M,PIETRUCZUK L,et al. Decision trees for mining data streams based on the Gaussian approximation[J]. IEEE transactions on knowledge & data engineering,2013,26(1):108-119.
[13]RUTKOWSKI L,JAWORSKI M,PIETRUCZUK L,et al. The CART decision tree for mining data streams[J]. Information sciences,2014,266(5):1-15.
[14]RUTKOWSKI L,PIETRUCZUK L,DUDA P,et al. Decision trees for mining data streams based on the McDiarmid[J]. IEEE transactions on knowledge & data engineering,2013,25(6):1272-1279.
[15]JANKOWSKI D,JACKOWSKI K. Evolutionary algorithm for decision tree induction[C]//IFIP International Conference on Computer Information Systems and Industrial Management. Berlin,Heidelberg:Springer,2014:23-32.
[16]JANKOWSKI D,JACKOWSKI K. An increment decision tree algorithm for streamed data[C]//Trustcom/bigdatase/ispa. Helsinki,Finland:IEEE,2015:199-204.
[17]JANKOWSKI D,JACKOWSKI K,CYGANEK B. Learning decision trees from data streams with concept drift[J]. Procedia computer science,2016,80:1682-1691.
[18]MIRZAMOMEN Z,KANGAVARI M R. Evolving fuzzy min-max neural network based decision trees for data stream classification[J]. Neural processing letters,2017,45(1):341-363.
[19]DUDA P,JAWORSKI M,PIETRUCZUK L,et al. A novel application of Hoeffding’s inequality to decision trees construction for data streams[C]//International Joint Conference on Neural Networks. Beijing:IEEE,2014:3324-3330.
[20]陈煜,李玲娟. 一种基于决策树的隐私保护数据流分类算法[J]. 计算机技术与发展,2017,27(7):111-114.
[21]MANAPRAGADA C,WEBB G,SALEHI M. Extremely fast decision tree[C]//International Conference on Knoledge Discovery,London,Unite Kingdom,2018:1-10.
[22]CZARNOWSKI I,JEDRZEJOWICZ P. Ensemble classifier for mining data streams[J]. Procedia computer science,2014,35(9):397-406.
[23]HAN D,LI S,WEI F,et al. Two birds with one stone:classifying positive and unlabeled examples on uncertain data streams[J]. Neurocomputing,2018,277(1):149-160.
[24]KRAWCZYK B,SKRYJOMSKI P. Cost-sensitive perception decision trees for imbalanced drifting data streams[M]//Machine Learning and Knowledge Discovery in Databases. Cham:Springer,2017:512-527.
[25]YANG H,FONG S. Incrementally optimized decision tree for mining imperfect data streams[M]//Networked Digital Technologies. Berlin,Heidelberg:Springer,2012:281-296.
[26]ZLIOBAITE I. Learning under concept drift:an overview[J]. Computer science,2010,270(10):1-36.
[27]LI P P,WU X D,HU X G. Learning concept-drifting data streams with random ensemble decision trees[J]. Neurocomputing,2015,166(C):68-83.
[28]LIANG C Q,ZHANG Y,SONG Q. Decision tree for dynamic and uncertain data streams[C]//Proceedings of the Second Asian Conference on Machine Learning. ACML,Tokyo,Japan:Microtome Publishing,2010:209-224.
[29]LI P P,WU X D,HU X G,et al. A random decision tree ensemble for mining concept drifts from noisy data streams[J]. Applied artificial intelligence,2010,24(7):680-710.
[30]张剑,曹萍,寿国础. 网络流量识别的自适应分级滑动窗决策树算法[J]. 计算机应用研究,2013,30(8):2470-2472.
[31]刘志军,张杰,许广义. 基于自适应快速决策树的不确定数据流概念漂移分类算法[J]. 控制与决策,2016,31(9):1609-1614.
[32]DOMINGOS P,HULTEN G. Mining high-speed data streams[C]//Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Boston:ACM Press,2000:71-80.
[33]HULTEN G,DOMINGOS P. Mining decision trees from streams[M]//Data Stream Management. Berlin Heidelberg:Springer,2016.
[34]JOAO G,ROCHA R,MEDAS P. Accurate decision trees for mining high-speed data streams[C]//Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington,DC,USA:ACM,2003:24-27.
[35]HULTEN G,SPENCER L,DOMINGOS P. Mining time-changing data streams[C]//Proceeding of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Fransisco,2001:97-106.
[36]KRAWCZYK B,MINKU L L,GAMA J. Ensemble learning for data stream analysis:a survey[J]. Information fusion,2017,37(C):132-156.
[37]PFAHRINGER B,HOLMES G,KIRKBY R. New options for Hoeffding trees[M]//AI 2007:Advances in Artificial Intelligence. Berlin Heidelberg:Springer,2007.
[38]BIFET A,HOLMES G,PFAHRINGER B,et al. Fast perceptron decision tree learning from evolving data streams[C]//Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. Berlin:Springer,2010:299-310.
[39]FAN W,WANG H,YU P S,et al. Is random model better?On its accuracy and efficiency[C]//IEEE International Conference on Data Mining. New York:Hawthorne,IEEE,2003:51-58.
[40]BREIMAN L. Random forests[J]. Machine learning,2001,45(1):5-32.
[41]GAMA J,MEDAS P,POCHA R. Forest trees for on-line data[C]//Proceedings of ACM Symposium on Applied Computing. ACM,New York,NY,USA,2004:632-636.
[42]ABDULSALAM H,SKILLICORN D B,MARTIN P. Streaming random forests[C]//Database Engineering and Applications Symposium,2007. Ideas 2007 International. Banff,Alta,Canada,IEEE,2007:225-232.
[43]HU X,LI P,WU X,WU G. A semi-random multiple decision-tree algorithm for mining data streams[J]. Journal of Computer Science and Technology,2007,22(5):711-724.
[44]ABDULSALAM H,SKILLICORN D B,MARTIN P. Classifying Evolving Data Streams Using Dynamic Streaming Random Forests[C]//International Conference on Database and Expert Systems Applications. Kingston,Canada:Springer-Verlag,2008:643-651.
[45]LI P,HU X,WU X. Mining concept-drifting data streams with Multiple Semi-Random Decision Trees[C]//International Conference on Advanced Data Mining and Applications. Berlin,Heidelberg:Springer-Verlag,2008:733-740.
[46]IKONOMOVSKA E,GAMA J,DEROSKI S. Learning model trees from evolving data streams[J]. Data mining & knowledge discovery,2011,23(1):128-168.
[47]JABER G,CORNUEJOLS A,TARROUX P. A new on-line learning method for coping with recurring concepts:The ADACC System[C]//International Conference on Neural Information Processing. Berlin,Heidelberg:Springer,2013:595-604.
[48]ZHUKOV A V,SIDOROV D N,FOLEY A M. Random forest based approach for concept drift handling[C]//Analysis of Images Social Networks and Texts:5th International Conference. Yekaterinburg,Russia,2016,661:69-77.
[49]BIFET A,GAVALDA R. Learning from time-changing data with adaptive windowing[C]//Siam International Conference on Data Mining. Minneapolis:DBLP,2007.
[50]白洋. 数据流概念漂移检测和不平衡数据流分类算法研究[D]. 北京:北京交通大学,2017.
[51]GAMA J,MEDAS P,CASTILLO G,et al. Learning with drift detection[J]. Intelligent data analysis,2004,8:286-295.
[52]RAUDYS S. Statistical and neural classifiers:an integrated approach to design[M]. Berlin,Heidelberg:Springer-Verlag,2014:289.
[53]ROSS G J,ADAMS N M,TASOULIS D K,et al. Exponentially weighted moving average charts for detecting concept drift[J]. Pattern recognition letters,2012,33(2):191-198.
[54]JOAO G,BIFET A,PECHENIZKIY M,et al. A survey on concept drift adaptation[J]. Acm computing surveys,2014,46(4):1-37.
[55]FARID D M,RAHMAN C M. Novel class detection in concept-drifting data stream mining employing decision tree[C]//International Conference on Electrical & Computer Engineering. Dhaka,Bangladesh:IEEE,2013:630-633.
[56]BARDDAL J P,GOMES H M,ENEMBRECK F. A survey on feature drift adaptation[C]//IEEE International Conference on Tools with Artificial Intelligence. Vietri Sul Mare,Italy:IEEE,2015:1-8.
[57]HASHEMI S,YANG Y. Flexible decision tree for data stream classification in the presence of concept change,noise and missing values[J]. Data mining & knowledge discovery,2009,19(1):95-131.
[58]ISAZADEH A,MAHAN F,PEDRYCZ W. MFlexDT:multi flexible fuzzy decision tree for data stream classification[J]. Soft computing,2016,20(9):3719-3733.
[59]SONG X,WANG H,HE H Y,et al. MHFlexDT:a multivariate branch fuzzy decision tree data stream mining strategy based on hybrid partitioning standard[C]//International Symposium on Neural Networks. Cham:Springer,2018:310-317.
[60]LI P P,WU X D,LIANG Q H,et al. Random ensemble decision trees for learning concept-drifting data streams[M]//Advances in Knowledge Discovery and Data Mining. Berlin,Heidelberg:Springer,2011:313-325.
[61]RAMREZ G S,KRAWCZYK B,CARCIA S,et al. A survey on data preprocessing for data stream mining[J]. Neurocomputing,2017,239(C):39-57.
[62]JAPKOWICZ N,STEFANOWSKI J. Big data analysis:new algorithms for a new society[M]. Switzerland:Springer International Publishing,2016:1-10.
[63]SHAKER A,HULLERMEIER E. Survival analysis on data streams:analyzing temporal events in dynamically changing environments[J]. International journal of applied mathematics & computer science,2014,24(1):199-212.
[64]CANO A,ZAFRA A. Solving classification problems using genetic programming algorithms on GPUs[C]//International Conference on Hybrid Artificial Intelligence Systems. Berlin,Heidelberg:Springer-Verlag,2010:17-26.