[1]卡米拉,汤国安,杨 昕,等.基于流域边界剖面线的陕北小流域分形特征(英文)[J].南京师范大学学报(自然科学版),2019,42(04):131-144.[doi:10.3969/j.issn.1001-4616.2019.04.019]
 Kamila Kabo-bah,Tang Guoan,Yang Xin,et al.Fractal Dimension Features from Catchment BoundaryProfile(CBP)of Small Watersheds in the NorthernShaanxi Province of China[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(04):131-144.[doi:10.3969/j.issn.1001-4616.2019.04.019]
点击复制

基于流域边界剖面线的陕北小流域分形特征(英文)()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第42卷
期数:
2019年04期
页码:
131-144
栏目:
·地理学·
出版日期:
2019-12-30

文章信息/Info

Title:
Fractal Dimension Features from Catchment BoundaryProfile(CBP)of Small Watersheds in the NorthernShaanxi Province of China
文章编号:
1001-4616(2019)04-0131-14
作者:
卡米拉123汤国安14杨 昕15那嘉明4熊礼阳5
(1.南京师范大学地理科学学院,江苏 南京 210023)(2.能源与自然资源大学地球科学学院,加纳 苏尼亚尼 214)(3.能源与自然资源大学地球观测研究和创新中心,加纳 苏尼亚尼 214)(4.南京师范大学虚拟地理环境教育部重点实验室,江苏 南京 210023)(5.江苏省地理信息资源开发与利用协同创新中心,江苏 南京 210023)
Author(s):
Kamila Kabo-bah123Tang Guoan14Yang Xin15Na Jiaming4Xiong Liyang5
(1.School of Geography,Nanjing Normal University,Nanjing 210023,China)(2.School of Geosciences,University of Energy and Natural Resources,Sunyani 214,Ghana)(3.Earth Observation Research and Innovation Centre(EORIC),University of Energy and Natural Resou
关键词:
盒计数法Higuchi法Hurst法数字高程模型(DEM)分维数
Keywords:
box countingHiguchiHurstdigital elevation model(DEM)fractal dimension
分类号:
P208
DOI:
10.3969/j.issn.1001-4616.2019.04.019
文献标志码:
A
摘要:
陕北黄土高原因其独特的地貌特征而成为重要的地貌研究区域. 本文基于先进星载热辐射和反射辐射计(ASTER)30 m空间分辨率的数字高程模型(DEM)数据提取的流域边界剖面线(CBP),评价了陕北黄土高原小流域的分形特征. 通过对比盒计数法(BCM)、Higuchi法(HIG)和Hurst法(HUR)3个分形维数估算模型发现,分维值计算结果略有不同. 其中,BMC和HIG法计算结果更为接近. 当HIG法在某些地方的分维数估值过高时,合计数法表现出更好的一致性和稳定性,适合于陕北黄土高原的分维值估算. 研究发
Abstract:
The Loess Plateau of the Northern Shaanxi Province continues to be an important geomorphological research zone as a result of its history and geology evolution. This paper assessed the fractal properties of Catchment Boundary Profiles(CBP)generated from a 30 m ASTER Digital Elevation Model(DEM)for the study area. Three fractal models were applied:Box Counting,Higuchi and Hurst. The methods showed slight variation of fractal dimension’s(FD)estimates for each CBP,with close estimates between the Box Counting and Higuchi models. The Box counting method was the most consistent and accurate while the Higuchi overestimated in some cases. The FD results shows close similarity with CBP complexity and harmonic behaviour,revealing the fractals sensitivity to changes in geomorphological characteristics irrespective of the size of the object under investigation. The results also closely relate to previous works landform classification and dynamic analysis using other methods. The findings from this research would provide vital information for future land use planning purposes in the region and complement other research interested in the application of fractals for modelling on climate related studies.

参考文献/References:

[1] Lü G,XIONG L,CHEN M,et al. Chinese progress in geomorphometry[J]. Journal of geographical sciences,2017,27(11):1389-1412.
[2]AN Z,KUKLA G J,PORTER S C,et al. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130 000 years[J]. Quaternary research,1991,36(1):29-36.
[3]FU B,CHEN L,MA K,et al. The relationships between land use and soil conditions in the hilly area of the loess plateau in northern Shaanxi,China[J]. Catena,2000,39(1):69-78.
[4]ZHAO T,YANG M,WALLING D E,et al. Using check dam deposits to investigate recent changes in sediment yield in the Loess Plateau,China[J]. Global and planetary change,2017,152:88-98.
[5]ZHAO G,KONDOLF G M,MU X,et al. Sediment yield reduction associated with land use changes and check dams in a catchment of the Loess Plateau,China[J]. Catena,2017,148(2):126-137.
[6]GUOAN T,MUDAN Z,TIANWEN L,et al. Simulation on slope uncertainty derived from DEMs at different resolution levels:a case study in the Loess Plateau[J]. Journal of geographical sciences,2003,13(4):387-394.
[7]XIONG L,TANG G,YAN S,et al. Landform-oriented flow-routing algorithm for the dual-structure loess terrain based on digital elevation models[J]. Hydrological process,2014,28(4):1756-1766.
[8]TANG G,JIA Y,YANG X,et al. The profile spectrum of catchment boundary basing on DEMs in loess plateau[C]//the 24th international cartographic conference. Santiago,Chile,2009:15-21.
[9]TANG G,LI F,LIU X,et al. Research on the slope spectrum of the Loess Plateau[J]. Science in China series E:technological sciences,2008,51(1):175-185.
[10]HESSEL R,VAN ASCH T. Modelling gully erosion for a small catchment on the Chinese Loess Plateau[J]. Catena,2003,54(1/2):131-146.
[11]ZHANG H Y,SHI Z H,FANG N F,et al. Linking watershed geomorphic characteristics to sediment yield:evidence from the Loess Plateau of China[J]. Geomorphology,2015,234:19-27.
[12]CHENG N N,HE H M,YANG S Y,et al. Impacts of topography on sediment discharge in Loess Plateau,China[J]. Quaternary international,2017,440:119-129.
[13]Zhou Y,Tang G,Yang X,et al. Positive and negative terrains on northern Shaanxi Loess Plateau[J]. Journal of geographical sciences,2010,20(1):64-76.
[14]TURCOTTE D L. Fractals and chaos in geology and geophysics[M]. Cambridge:Cambridge University Press,1997:412.
[15]ZHOU B,WANG J,WANG H. Three-dimensional sphericity,roundness and fractal dimension of sand particles[J]. Geotechnique,2017,68(1):18-30.
[16]PESQUET P B,VéHEL J L. Stochastic fractal models for image processing[J]. IEEE signal processing magazine,2002,19(5):48-62.
[17]LI M,YANG X,NA J,et al. Regional topographic classification in the North Shaanxi Loess Plateau based on catchment boundary profiles[J]. Progress in physical geography,2017,41(3):302-324.
[18]WANG X,JIAO F,LI X,et al. The loess plateau[M]//Multifunctional land-use systems for managing the nexus of environmental resources. Cham:Springer,2017:11-27.
[19]USGS. Earth explorer[J/OL]. [2019-03-01]. https://earthexplorer.usgs.gov/.
[20]TACHIKAWA T,KAKU M,IWASAKI A,et al. ASTER global digital elevation model version 2-summary of validation results[R]. Washington D.C.:NASA,2011.
[21]KLINKENBERG B. A review of methods used to determine the fractal dimension of linear features[J]. Mathematical geology,1994,26(1):23-46.
[22]RODRIGUEZ I,RINALDO A I. Fractal river basins:chance and self-organization[M]. Cambridge:Cambridge University Press,2001:564.
[23]ANGELES G R,PERILLO G M E,PICCOLO M C,et al. Fractal analysis of tidal channels in the Baha Blanca Estuary(Argentina)[J]. Geomorphology,2004,57(3/4):263-274.
[24]ZHAO X,WANG X. Fractal dimension estimation of Rgb color images using maximum color distance[J]. Fractals,2016,24(4):1650040.
[25]ORTIZ J P,AGUILERA R C,BALANKIN A S,et al. Seismic activity seen through evolution of the hurst exponent model in 3D[J]. Fractals,2016,24(4):1650045.
[26]MIELNICZUK J,WOJDYO P. Estimation of Hurst exponent revisited[J]. Computational statistics & data analysis,2007,51(9):4510-4525.
[27]ZHANG H F,SHU Y T,YANG O. Estimation of Hurst parameter by variance-time plots[C]//1997 IEEE Pacific Rim Conference on Communications,Computers and Signal Processing,PACRIM. 10 Years Networking the Pacific Rim,1987-1997. Victoria B.C.:IEEE,1997:883-886.
[28]VAZIRI G,ALMASGANJ F,JENABI M S. On the fractal self-similarity of laryngeal pathologies detection:the estimation of Hurst parameter[C]//2008 International Conference on Information Technology and Applications in Biomedicine. Shenzhen:IEEE,2008:383-386.
[29]GILMORE M,YU C X,RHODES T L,et al. Investigation of rescaled range analysis,the Hurst exponent,and long-time correlations in plasma turbulence[J]. Physics of plasmas,2002,9(4):1312-1317.
[30]BASSINGTHWAIGHTE J B,RAYMOND G M. Evaluating rescaled range analysis for time series[J]. Annals of biomedical engineering,1994,22(4):432-444.
[31]SAKALAUSKIEN G. The hurst phenomenon in hydrology[J]. Environmental research,engineering and management,2003,3(25):16-20.
[32]CERVANTES-DE LA TORRE F,GONZáLEZ-TREJO J I,REAL-PAMIREZ C A,et al. Fractal dimension algorithms and their application to time series associated with natural phenomena[C]//Journal of Physics:Conferences Series. IOP Publishing,2013,475. doi:10.1088/1742-6596/475/1/012002.
[33]ZHOU Y,TANG G,YANG X,et al. Positive and negative terrains on northern Shaanxi Loess Plateau[J]. Journal of geogra-phical sciences,2010,20(1):64-76.
[34]Editorial Board of the People’s Republic of China Landform Atlas. Geomorphological Atlas of the People’s Republic of China(1:1 000 000)[M]. Beijing:Science Press,2009:125-128.

备注/Memo

备注/Memo:
Received data:201`9-03-29.Foundation item:Supported by the National Natural Science Foundation of China(41771415,41930102),the Priority Academic Program Development of Jiangsu Higher Education Institutions(164320H116). Corresponding author:Yang Xin,prof
更新日期/Last Update: 2019-12-31