[1]周爽,杨永富.R3上非等熵Euler-Maxwell系统稳态解的全局稳定性(英文)[J].南京师范大学学报(自然科学版),2020,43(01):23-30.[doi:10.3969/j.issn.1001-4616.2020.01.005]
 ZhouShuang,YangYongfu.GlobalStabilityofLargeSteady-StatestoaNon-IsentropicEuler-MaxwellSysteminR3[J].JournalofNanjingNormalUniversity(NaturalScienceEdition),2020,43(01):23-30.[doi:10.3969/j.issn.1001-4616.2020.01.005]
点击复制

R3上非等熵Euler-Maxwell系统稳态解的全局稳定性(英文)()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第43卷
期数:
2020年01期
页码:
23-30
栏目:
·数学·
出版日期:
2020-03-15

文章信息/Info

Title:
GlobalStabilityofLargeSteady-StatestoaNon-IsentropicEuler-MaxwellSysteminR3
文章编号:
1001-4616(2020)01-0023-08
作者:
周爽杨永富
河海大学理学院,江苏南京211100
Author(s):
ZhouShuangYangYongfu
CollegeofScience,HohaiUniversity,Nanjing211100,China
关键词:
Euler-Maxwell系统整体光滑解稳定性稳态解能量估计
Keywords:
Euler-Maxwellsystemglobalsmoothsolutionstabilitysteady-statessolutionenergyestimate
分类号:
O175
DOI:
10.3969/j.issn.1001-4616.2020.01.005
文献标志码:
A
摘要:
本文考虑的是无温度扩散项的非等熵Euler-Maxwell系统在R3上的稳定性问题.当初值接近系统的稳态时,我们给出光滑解的整体存在性,且当时间趋于无穷大时该光滑解收敛于稳态.其基本思想是改变未知变量并选取完全Euler方程的非对角对称化子来得到耗散估计.此外,对解的导数的阶的归纳论证在得到稳定性结果中也起着关键作用.
Abstract:
ThispaperisconcernedwithastabilityprobleminR3foranon-isentropicEuler-Maxwellsystemwithouttemperaturediffusionterm.Whentheinitialdataareclosetothesteadystatesofthesystem,weshowtheglobalexistenceofsmoothsolutionswhichconvergetowardthesteadystatesasthetimetendstoinfinity.Thebasicideaistomakeachangeofunknownvariablesandchooseanon-diagonalsymmetrizerofthefullEulerequationstogetthedissipationestimates.Inaddition,aninductionargumentontheorderofderivativesofsolutionsinenergyestimatesplaysakeyroleinobtainingthestabilityresult.

参考文献/References:

[1]BESSEC,DEGONDP,DELUZETF,etal.Amodelhierarchyforionosphericplasmamodeling[J].Mathematicalmodelsandmethodsinappliedsciences,2004,14:393-415.
[2]CHENF.Introductiontoplasmaphysicsandcontrolledfusion[M].NewYork:PlenumPress,1984.
[3]KATOT.TheCauchyproblemforquasi-linearsymmetrichyperbolicsystems[J].Archiverationalmechanicsandanalysis,1975,58:181-205.
[4]GUOY,STRAUSSW.Stabilityofsemiconductorstateswithinsulatingandcontactboundaryconditions[J].Archiverationalmechanicsandanalysis,2005,170:1-30.
[5]LIUCM,GUOZJ,PENGYJ.Globalstabilityoflargesteady-statesforEuler-MaxwellsystemsinR3[J].Communicationsinmathematicalscience,2019,17(7):1841-1860.
[6]DUANRJ.GlobalsmoothflowsforthecompressibleEuler-Maxwellsystem:therelaxationcase[J].Journalofhyperbolicdifferentialequations,2011,8:375-413.
[7]FENGYH,WANGS,KAWASHIMAS.Globalexistenceandaymptoticdecayofsolutionstothenon-isentropicEuler-Maxwellsystem[J].Mathematicalmodelsandmethodsinappliedsciences,2014,24:2851-2884.
[8]LIUQQ,ZHUCJ.AsymptoticstabilityofstationarysolutionstothecompressibleEuler-Maxwellequations[J].Indianauniversitymathmaticsjournal,2013,62:1203-1235.
[9]PENGYJ,WANGS,GUQL.RelaxationlimitandglobalexistenceofsmoothsolutionsofcompressibleEuler-Maxwellequations[J].SIAMjournalonmathematicalanalysis,2011,42(2):944-970.
[10]UEDAY,KAWASHIMAS.Decaypropertyofregularity-losstypefortheEuler-Maxwellsystem[J].Methodsandapplicationsofanalysis,2011,18:245-267.
[11]XUJ.GlobalclassicalsolutionstothecompressibleEuler-Maxwellequations[J].SIAMjournalonmathematicalanalysis,2011,43(6):2688-2718.
[12]PENGYJ.Stabilityofnon-constantequilibriumsolutionsforEuler-Maxwellequations[J].Journaldemathématiquespuresetappliquées,2015,103:39-67.
[13]FENGYH,PENGYJ,WANGS.Stabilityofnon-constantequilibriumsolutionsfortwo-fluidEuler-Maxwellsystems[J].Nonlinearanalysis:realworldapplcations,2015,26:372-390.
[14]FENGYH,WANGS,LIX.Stabilityofnon-constantsteadystatessolutionsfornon-isentropicEuler-Maxwellsystemwithatemperaturedampingterm[J].Mathematicalmodelsandmethodsinappliedsciences,2016,39:2514-2528.
[15]LIX,WANGS,FENGYH.Stabilityofnon-constantsteady-statesolutionsforbipolarnon-isentropicEuler-Maxwellequationswithdampingterm[J].Zeitschriftfuerangewandtemathematikundphysik,2016,67:133.
[16]LIUCM,PENGYJ.Stabilityofperiodicsteady-statesolutionstoanon-isentropicEuler-Maxwellsystem[J].Zeitschriftfuerangewandtemathematikundphysik,2017,68:105.
[17]LIUCM,PENGYJ.Stabilityofperiodicsteady-statesolutionstoanon-isentropicEuler-Poissonsystem[J].Journalofhyperbolicdifferentialequations,2017,262:5497-5517.

相似文献/References:

[1]李 婷,杨永富.非等熵Euler-Maxwell方程组大稳态解的稳定性[J].南京师范大学学报(自然科学版),2017,40(04):26.[doi:10.3969/j.issn.1001-4616.2017.04.006]
 Li Ting,Yang Yongfu.Stability of Large Steady-State Solutions toNon-Isentropic Euler-Maxwell Systems[J].JournalofNanjingNormalUniversity(NaturalScienceEdition),2017,40(01):26.[doi:10.3969/j.issn.1001-4616.2017.04.006]

备注/Memo

备注/Memo:
Receiveddata:2019-06-21.Foundationitem:SupportedbyNSFCofChina(11571092).Correspondingauthor:YangYongfu,doctor,associateprofessor,majoredinPDEs.E-mail:yyang@hhu.edu.cn
更新日期/Last Update: 2020-03-15