[1]王远飞,周存通,林 洁,等.底层放空对黄村水库N、P、Mn、Fe含量的影响[J].南京师范大学学报(自然科学版),2020,43(03):136-140.[doi:10.3969/j.issn.1001-4616.2020.03.021]
 Wang Yuanfei,Zhou Cuntong,Lin Jie,et al.Effect of Bottom Water Release on the Contents ofN,P,Mn and Fe in Huangcun Reservoir[J].Journal of Nanjing Normal University(Natural Science Edition),2020,43(03):136-140.[doi:10.3969/j.issn.1001-4616.2020.03.021]
点击复制

底层放空对黄村水库N、P、Mn、Fe含量的影响()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第43卷
期数:
2020年03期
页码:
136-140
栏目:
·生态学·
出版日期:
2020-09-30

文章信息/Info

Title:
Effect of Bottom Water Release on the Contents ofN,P,Mn and Fe in Huangcun Reservoir
文章编号:
1001-4616(2020)03-0136-05
作者:
王远飞12周存通12林 洁3樊晓丽2林植华2
(1.南京师范大学生命科学学院,江苏 南京 210023)(2.丽水学院生态学院,浙江 丽水 323000)(3.丽水市水资源开发有限公司,浙江 丽水 323000)
Author(s):
Wang Yuanfei12Zhou Cuntong12Lin Jie3Fan Xiaoli2Lin Zhihua2
(1.School of Life Sciences,Nanjing Normal University,Nanjing 210023,China)(2.College of Ecology,Lishui University,Lishui 323000,China)(3.Lishui Water Resources Development Co.,Ltd,Lishui 323000,China)
关键词:
黄村水库底层放空水质外源负荷
Keywords:
Huangcun reservoirbottom water releasingwater qualityexternal loading
分类号:
Q149
DOI:
10.3969/j.issn.1001-4616.2020.03.021
文献标志码:
A
摘要:
近几十年来,浅层湖泊、水库的水质在世界范围内受到关注. 本研究探究了黄村水库底层放空对水质的影响. 结果表明,底层放空前,方差分析结果显示,底层水和中层水之间Fe、P差异不显著; Mn和N的含量差异显著,底层水中的含量均显著高于中层水. 放空前后监测物的方差分析比较显示,水库底层水Fe、Mn、P、N差异均不显著; 水库中层水Fe、Mn、P差异均不显著,N的含量差异显著,放空后中层水N含量显著增加. 回归分析结果表明,水库中Fe和P含量随时间增加显著,Mn和N含量随时间增加不显著,但从长远变化趋势来看,水库中Mn和N含量呈增加趋势. 在放空洞排水过程中,Fe、Mn、P、N的自然增加率均大于减少率,表明放空洞排水不能抵消由外部因素带入水库的营养盐.
Abstract:
Water quality in shallow lakes has suffered worldwide in recent decades. This study explored the effect of the bottom water releasing of huangcun reservoir on water quality. The results showed that before the bottom water was released,the analysis of variance showed that there was no significant difference in Fe and P between the bottom water and the intermediate water. The concentration of Mn and N was significantly different,and the concentration of the bottom water was significantly higher than that of the intermediate water. The variance analysis of the detection substances before and after water releasing showed that the difference of Fe,Mn,P and N in the bottom water was not significant. The difference of Fe,Mn and P in the intermediate water was not significant while the difference of N concentration was significant. The results of regression analysis showed that the Fe and P contents increased significantly with time,while the Mn and N contents did not increase significantly with time,but from a long-term trend,the Mn and N contents showed an increasing trend. The natural increasing rate of Fe,Mn,P and N was greater than the decreasing rate in the process of water releasing,which showed that the water releasing cannot offset the nutrients brought into the reservoir by external factors.

参考文献/References:

[1] MüLLER S,BALDWIN D S,MITROVIC S M,et al. Oxygen and dissolved organic carbon control release of N,P and Fe from the sediments of a shallow,Polymictic Lake[J]. Journal of soils and sediments,2016,16(3):1109-1120.
[2]CHOWDHURY M,BAKRI D A. Diffusive nutrient flux at the sediment-water interface in Suma Park Reservoir,Australia[J]. Hydrological sciences journal,2006,51(1):144-156.
[3]CONLEY D J,PAERL H W,HOEARTH R W,et al. Controlling eutrophication:nitrogen and phosphorus[J]. Science,2009,323:1014-1015.
[4]HOWARTH R W,MARINO R. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems:evolving views over three decades[J]. Limnology and oceanography,2006,51:364-376.
[5]SUZUMURA M,KOKUBUN H,ARATA N. Distribution and characteristics of suspended particulate matter in a heavily eutrophic estuary,Tokyo Bay,Japan[J]. Marine pollution bulletin,2004,49(5-6):496-503.
[6]FAN C,ZHANG L,YANG L,et al. Simulation of internal loading of nitrogen and phosphorus in a Lake[J]. Oceanologia limnologia sinica,2002,33:370-378.
[7]NOWLIN W H,EVARTS J L,VANNI M J. Release rates and potential fates of nitrogen and phosphorus from sediments in a eutrophic reservoir[J]. Freshwater biology,2005,50(2):301-322.
[8]BOSTROM B,ANDERSEN J,FLEISCHER S J,et al. Exchange of phosphorus across the sediment-water interface[J]. Hydrobiologia,1988,170(1):229-244.
[9]MOORE A,REDDY K R. Role of Eh and pH on phosphorus geochemistry in sediments of lake Okeechobee,Florida[J]. Journal of environment quality,1994,23(5):955-964.
[10]KOPACEK J,BOROVEC J,HEJZLAR J,et al. Aluminum control of phosphorus sorption by lake sediments[J]. Environmental science and technology,2005,39(22):8784-8789.
[11]LAKE B A,COOLIDGE K M. Factors contributing to the internal loading of phosphorus from anoxic sediments in six maine,USA,lakes[J]. Science of the total environment,2007,373(2-3):534-541.
[12]刘丽敏,顾重武,曾燕燕. 亭下水库底泥中氮磷及锰的释放特性研究[J]. 浙江水利科技,2018,218(4):4-7.
[13]HUANG T,XU J,CAI D. Efficiency of active barriers attaching biofilm as sediment capping to eliminate the internal nitrogen in eutrophic lake and canal[J]. Journal of environmental sciences,2011,23(5):738-743.
[14]PAN G,DAI L. Reducing the recruitment of sedimented algae and nutrient release into the overlying water using modified soil/sand flocculation-capping in eutrophic lakes[J]. Environmental science and technology,2012,46(9):5077-5084.
[15]GU X,CHEN K,ZHANG L. Preliminary evidence of nutrients release from sediment in response to oxygen across benthic oxidation layer by a longterm field trial[J]. Environmental pollution,2016,219:656-662.
[16]TOYAMA T,NISHIMURA Y,OGATA Y,et al. Effects of planting Phragmites australis on nitrogen removal,microbial nitrogen cycling,and abundance of ammonia-oxidizing and denitrifying microorganisms in sediments[J]. Environmental technology,2016,37:478-485.
[17]LIU C,SHAO S G,SHEN Q S,et al. Use of multi-objective dredging for remediation of contaminated sediments:a case study of a typical heavily polluted confluence area in China[J]. Environmental science pollution research,2015,22(21):17839-17849.
[18]ANNADOTTER H,CRONBERG G,AAGREN R,et al. Multiple techniques for lake restoration[J]. Hydrobiologia,1999,395-396:77-85.
[19]ZHONG J C,FAN C X,ZHANG L,et al. Significance of dredging on sediment denitrification in Meiliang Bay,China:A year long simulation study[J]. Journal environmental sciences,2010,22(1):68-75.
[20]丽水市水利局. 丽水市城市饮用水水源地安全保障规划[Z]. 2008.
[21]WALTER W G. Standard methods for the examination of water and wastewater[J]. American journal of public health and the nations health,1961,51(6):940.
[22]MORTIMER R J G,KROM M D,WATSON P G,et al. Sediment-water exchange of nutrients in the intertidal zone of the humber estuary,UK[J]. Marine pollution bulletin,1999,37(3-7):261-279.
[23]GARDNER W S,SEITZINGER S P,MALCZYK J M. The effects of sea salts on the forms of nitrogen released from estuarine and freshwater sediments:does ion pairing affect ammonium flux?[J]. Estuaries,1991,14(2):157-166.
[24]HAWKINS J E,FREEMAN C. Rising sea levels-potential effects upon terrestrial greenhouse gas production[J]. Soil biology and biochemistry,1994,26(3):325-329.
[25]DOWRICK D J,HUGHES S,FREEMAN C,et al. Nitrous oxide emissions from a gully mire in mide-wales,UK,under simulated summer drought[J]. Biogeochemistry,1999,44(2):151-162.
[26]RYSGAARD S,THASTUM P,DALSGAARD T,et al. Effects of salinity on NH+4 adsorption capacity,nitrification,and denitrification in Danish estuarine sediments[J]. Estuaries,1999,22(1):21-30.
[27]VOPEL K,WILSON P S,ZELDIS J. Sediment-seawater solute flux in a polluted New Zealand estuary[J]. Marine pollution bulletin,2012,64(12):2885-2891.
[28]KAISER D,UNGER D,QIU G,et al. Natural and human influences on nutrient transport through a small subtropical Chinese estuary[J]. Science of the total environment,2013,450:92-107.
[29]JING L D,WU C X,LIU J T. The effects of dredging on nitrogen balance in sediment-water microcosms and implications to dredging projects[J]. Ecological engineering,2013,52:167-174.
[30]LIU C,ZHONG J,WANG J,et al. Fifteen-year study of environmental dredging effect on variation of nitrogen and phosphorus exchange across the sediment-water interface of an urban lake[J]. Environmental pollution,2016,21:639-648.
[31]REDDY K R,FISHER M M,IVANOFF D. Resuspension and diffusive flux of nitrogen and phosphorus in a hypereutrophic lake[J]. Journal of environment quality,1996,25(2):363-371.
[32]NOWLIN W H,EVARTS J L,VANNI M J. Release rates and potential fates of nitrogen and phosphorus from sediments in a eutrophic reservoir[J]. Freshwater biology,2005,50(2):301-322.
[33]WILHELM S,ADRIAN R. Impact of summer warming on the thermal characteristics of a polymictic lake and consequences for oxygen,nutrients and phytoplankton[J]. Freshwater biology,2008,53(2):226-237.
[34]BRANDES J A,DEVOL A H. Isotopic fractionation of oxygen and nitrogen in coastal marine sediments[J]. Geochimica et cosmochimica acta,1997,61(9):1793-1801.
[35]DI T,PAQUIN P R. Sediment oxygen demand model:methane and ammonia oxidation[J]. Journal of environmental engineering,1990,116(5):945-986.
[36]袁文权,张锡辉,张光明,等. 低浊水源铁锰与磷耦合转化研究[J]. 给水排水,2003,29(11):10-14.
[37]TANG C,LI Y,ACHARYA K. Modeling the effects of external nutrient reductions on algal blooms in hyper-eutrophic lake Taihu,China[J]. Ecological engineering,2016,94:164-173.
[38]LIU C,CHEN K,WANG Z. Nitrogen exchange across the sediment-water interface after dredging:the influence of contaminated riverine suspended particulate matter[J]. Environmental pollution,2017,229:879-886.
[39]A.普瓦雷尔. 几座高山水库冲沙管理经验回顾[J]. 水利水电快报,2003,24(21):10-13.

备注/Memo

备注/Memo:
收稿日期:2020-05-13.
基金项目:国家自然科学基金项目(31270443)、丽水市科技局重点研发计划项目(20150406、SH2017001).
通讯作者:林植华,教授,研究方向:生态学. E-mail:zhlin1015@126.com
更新日期/Last Update: 2020-09-15