参考文献/References:
[1] LIU X,SONG L,WU X,et al. Transferring deep representation for NIR-VIS heterogeneous face recognition[C]//2016 international conference on biometrics(ICB). IEEE:Halmstad,Sweden,2016.
[2]SAXENA S,VERBEEK J. Heterogeneous face recognition with CNNs[C]//European conference on computer vision. Springer,Cham,Switzerland,2016:483-491.
[3]HE R,WU X,SUN Z,et al. Wasserstein cnn:learning invariant features for nir-vis face recognition[J]. IEEE transactions on pattern analysis and machine intelligence,2019,41(7):1761-1773.
[4]REALE C,NASRABADI N M,KWON H,et al. Seeing the forest from the trees:a holistic approach to near-infrared heterogeneous face recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition workshops. New Jersey,USA:IEEE Press,2016:54-62.
[5]SONG L,ZHANG M,WU X,et al. Adversarial discriminative heterogeneous face recognition[C]//Thirty-second AAAI conference on artificial intelligence. New Orleans,USA,2018.
[6]王格格,郭涛,余游,等. 基于生成对抗网络的无监督域适应分类模型[J]. 电子学报,2020,48(6):1190-1197.
[7]TZENG E,HOFFMAN J,SAENKO K,et al. Adversarial discriminative domain adaptation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. New Jersey,USA:IEEE Press,2017:7167-7176.
[8]LARADJI I,BABANEZHAD R. M-ADDA:Unsupervised domain adaptation with deep metric learning[J]. arXiv preprint arXiv:1807.02552,2018.
[9]LE C Y,BOTTOU L,BENGIO Y,et al. Gradient-based learning applied to recognition[J]. Proceedings of the IEEE,1998,86(11):2278-2324.
[10]JIA X,JIN Y,SU X,et al. Domain-invariant representation learning using an unsupervised domain adversarial adaptation deep neural network[J]. Neurocomputing,2019,355(8):209-220.
[11]TZENG E,HOFFMAN J,ZHANG N,et al. Deep domain confusion:maximizing for domain invariance[J]. arXiv preprint arXiv:1412.3474,2014.
[12]GRETTON A,SMOLA A,HUANG J,et al. Covariate shift by kernel mean matching[J]. Dataset shift in machine learning,2009,3(4):5-12.
[13]LONG M,CAO Y,WANG J,et al. Learning transferable features with deep adaptation networks[J]. arXiv preprint arXiv:1502.02791,2015.
[14]SUN B,SAENKO K. Deep coral:correlation alignment for deep domain adaptation[C]//European conference on computer vision. Springer,Cham,Switzerland,2016:443-450.
[15]TZENG E,HOFFMAN J,DARRELL T,et al. Simultaneous deep transfer across domains and tasks[C]//Proceedings of the IEEE international conference on computer vision. New Jersey,USA:IEEE Press,2015:4068-4076.
[16]GANIN Y,LEMPITSKY V. Unsupervised domain adaptation by backpropagation[J]. arXiv preprint arXiv:1409.7495,2014.
[17]GHIFARY M,KLEIJN W B,ZHANG M,et al. Deep reconstruction-classification networks for unsupervised domain adaptation[C]//European conference on computer vision. Springer,Cham,Switzerland,2016:597-613.
[18]LIU M Y,TUZEL O. Coupled generative adversarial networks[C]//30th conference on neural information processing systems. Barcelona,Spain,2016:469-477.
[19]XU Y,ZHONG A,YANG J,et al. Bimodal biometrics based on a representation and recognition approach[J]. Optical engineering,2011,50(3):037202-037202-7. [责任编辑:陆炳新]