参考文献/References:
[1] 邹博伟,钱忠,陈站成,等. 面向自然语言文本的否定性与不确定性信息抽取[J]. 软件学报,2016,27(2):309-328.
[2]LI J,SUN A,HAN J,et al. A survey on deep learning for named entity recognition[J]. IEEE transactions on knowledge and data engineering,2020,32(3):1558-2191.
[3]GE H,CAVERLEE J,LU H. Taper:a contextual tensor-based approach for personalized expert recommendation[C]//Proceedings of the 10th ACM Conference on Recommender Systems. Boston,2016:261-268.
[4]LI X,WANG Z,GAO S,et al. An intelligent context-aware management framework for cold chain logistics distribution[J]. IEEE transactions on intelligent transportation systems,2019,20(12):4553-4566.
[5]BARTOLI A,DE LORENZO A,MEDVET E,et al. Active learning of regular expressions for entity extraction[J]. IEEE transactions on cybernetics,2017,48(3):1067-1080.
[6]ZHANG Y,YANG J. Chinese NER using lattice LSTM[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Melbourne,2018:1554-1564.
[7]汪诚愚,何晓丰,宫学庆,等. 面向上下位关系预测的词嵌入投影模型[J]. 计算机学报,2019,43(5):868-883.
[8]MORWAL S,JAHAN N,CHOPRA D. Named entity recognition using hidden Markov model(HMM)[J]. International journal on natural language computing,2012,1(4):15-23.
[9]MCCALLUM A,FREITAG D,PEREIRA F C N. Maximum entropy Markov models for information extraction and segmentation[C]//Proceedings of International Conference on Machine Learning. Stanford,2000:591-598.
[10]LAFFERTY J,MCCALLUM A,PEREIRA F C N. Conditional random fields:probabilistic models for segmenting and labeling sequence data[C]//Proceedings of the Eighteenth International Conference on Machine Learning. Williams College,MA,2001:282-289.
[11]DEVLIN J,CHANG M W,LEE K,et al. Bert:pre-training of deep bidirectional transformers for language understanding[J]. Computation and language,2018,23(2):3-19.
[12]COLLOBERT R,WESTON J,BOTTOU L,et al. Natural language processing(almost)from scratch[J]. Journal of machine learning research,2011,12(1):2493-2537.
[13]STRUBELL E,VERGA P,BELANGER D,et al. Fast and accurate entity recognition with iterated dilated convolutions[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Copenhagen,2017:2670-2680.
[14]HUANG Z,XU W,YU K. Bidirectional LSTM-CRF models for sequence tagging[J]. Computer science,2015(8):1508-1518.
[15]WANG S,LI Y,LIU N,et al. Noisy-data-disposing algorithm of data clean on the attribute level[J]. Computer engineering,2005(9):86-87.
[16]张华平,吴林芳,张芯铭,等. 领域知识图谱小样本构建与应用[J]. 人工智能,2020(1):113-124.
[17]唐明,朱磊,邹显春. 基于Word2Vec的一种文档向量表示[J]. 计算机科学,2016,43(6):214-217,269.
[18]MIKOLOV T,SUTSKEVER I,CHEN K,et al. Distributed representations of words and phrases and their compositionality[J]. Advances in neural information processing systems,2013,26:3111-3119.
[19]PENNINGTON J,SOCHER R,MANNING C D. Glove:global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha,2014:1532-1543.
[20]严云洋,瞿学新,朱全银,等. 基于离群点检测的分类结果置信度的度量方法[J]. 南京大学学报(自然科学版),2019,55(1):102-109.
[21]GOUTTE C,GAUSSIER E. A probabilistic interpretation of precision,recall and F-score,with implication for uation[C]//Proceedings of European Conference on Information Retri. Springer,Berlin,Heidelberg,2005:345-359.
相似文献/References:
[1]吴家皋,周凡坤,张雪英.HMM模型和句法分析相结合的事件属性信息抽取[J].南京师大学报(自然科学版),2014,37(01):30.
WuJiagao,Zhou Fankun,Zhang Xueying.Research of the Extraction Method of Event Properties Based on the Combining of HMM and Syntactic Analysis[J].Journal of Nanjing Normal University(Natural Science Edition),2014,37(01):30.
[2]龚乐君,张立鹏,李宇茜,等.基于决策树的乳腺癌病历文本的挖掘与决策[J].南京师大学报(自然科学版),2019,42(03):42.[doi:10.3969/j.issn.1001-4616.2019.03.006]
Gong Lejun,Zhang Lipeng,Li Yuxi,et al.Mining and Decision-Making of Breast Cancer MedicalRecord Text Based on Decision Tree[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(01):42.[doi:10.3969/j.issn.1001-4616.2019.03.006]
[3]梁兵涛,倪云峰.基于集成学习的中文命名实体识别方法[J].南京师大学报(自然科学版),2022,45(03):123.[doi:10.3969/j.issn.1001-4616.2022.03.016]
Liang Bingtao,Ni Yunfeng.Chinese Named Entity Recognition Method Based on Ensemble Learning[J].Journal of Nanjing Normal University(Natural Science Edition),2022,45(01):123.[doi:10.3969/j.issn.1001-4616.2022.03.016]