[1]王洪涛,何 萌,张玉珍,等.高温泡沫剂流变性能及泡沫机理研究[J].南京师大学报(自然科学版),2021,44(02):30-38.[doi:10.3969/j.issn.1001-4616.2021.02.006]
 Wang Hongtao,He Meng,Zhang Yuzhen,et al.Rheology of High-Temperature Foaming Agentsand the Foaming Mechanism[J].Journal of Nanjing Normal University(Natural Science Edition),2021,44(02):30-38.[doi:10.3969/j.issn.1001-4616.2021.02.006]
点击复制

高温泡沫剂流变性能及泡沫机理研究()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第44卷
期数:
2021年02期
页码:
30-38
栏目:
·化学·
出版日期:
2021-06-30

文章信息/Info

Title:
Rheology of High-Temperature Foaming Agentsand the Foaming Mechanism
文章编号:
1001-4616(2021)02-0030-09
作者:
王洪涛1何 萌1张玉珍1冯丽娟1曾庆桥1沈 健2杨陆涛2张鲁霞2
(1.中国石油华北油田公司勘探开发研究院,河北 任丘 062552)(2.南京师范大学化学与材料科学学院,江苏 南京 210023)
Author(s):
Wang Hongtao1He Meng1Zhang Yuzhen1Feng Lijuan1Zeng Qingqiao1Shen Jian2Yang Lutao2Zhang Luxia2
(1.Exploration and Development Research Institute,Huabei Oilfield Company,Petro China,Renqiu 062552,China)(2.School of Chemistry and Materials Science,Nanjing Normal University,Nanjing 210046,China)
关键词:
高温泡沫性能流变学剪切黏度分子动力学模拟
Keywords:
performance of high-temperature foamrheologyshear viscositymolecular dynamics simulation
分类号:
O69
DOI:
10.3969/j.issn.1001-4616.2021.02.006
文献标志码:
A
摘要:
本文针对高温泡沫剂在100 ℃以上条件下性能测试难度高、设备专一性强、操作复杂的问题,利用流变学方法,对高温条件下,不同剪切速率下的泡沫剂及泡沫体系分别进行了研究. 通过对其剪切黏度的比较,从而对泡沫剂在100 ℃以上高温条件下的泡沫性能、注入性能和调堵性能进行了有效评估,为高温泡沫体系的性能评价提供了一种新的思路. 在上述研究的基础上,本文还利用分子动力学模拟方法对高温泡沫剂形成、稳定泡沫的机理进行了探讨.
Abstract:
It is difficult to test the performance of high-temperature foaming agents at more than 100 ℃,since it requires high specificity of devices and test operation is complex. To overcome these shortcomings,we used rheological methods to investigate the foaming agents and the foam system with different shear rates at high temperature. The foaming performance,the injection performance and the plugging performance at more than 100 ℃ are uated by comparing their shear viscosity. This work also provides a new idea for the performance uation of high-temperature foam systems. Additionally,by molecular dynamics simulation,we investigated the forming of the high-temperature foam systems and the mechanism of how they are stabilized.

参考文献/References:

[1] 彭宝亮,罗健辉,王平美,等. 用于低渗透油田调剖的纳米颗粒稳定泡沫体系研究进展[J]. 油田化学,2017,34(4):745-748.
[2]张作安. 低渗透油藏泡沫驱油机理及应用现状研究[J]. 当代化工,2017,46(8):1693-1695,1704.
[3]李兆敏,李冉,刘伟,等. 泡沫在油气田开发中的应用及展望(Ⅱ)—泡沫流体在近井及地层中的应用[J]. 油田化学,2013,30(1):155-160.
[4]杨怀军,丁亚军,孙琳,等. 驱油用抗温空气泡沫体系研究[J]. 西南石油大学学报(自然科学版),2012,34(5):93-98.
[5]刘晓臣,韩向丽,牛金平. 耐盐耐高温驱油用泡沫剂的研究进展[J]. 中国洗涤用品工业,2012(4):38-40.
[6]史胜龙,王业飞,王振彪,等. 微泡沫在高温高盐油藏中的驱油作用[J]. 油田化学,2017,34(1):96-102.
[7]杨燕,蒲万芬,周明. 驱油泡沫稳定剂的性能研究[J]. 西南石油学院学报,2002(4):60-63.
[8]王庆,刘永革,吕朝辉,等. 高温发泡剂性能评价新方法[J]. 特种油气藏,2015,22(3):93-96,155.
[9]祖庸,李春洲,马宝岐. 泡沫流变性研究现状及进展[J]. 西北大学学报(自然科学版),1993(6):527-532.
[10]SINGH R,MOHANTY K K. Foam flow in a layered,heterogeneous porous medium:a visualization study[J]. Fuel,2017,197:58-69.
[11]张广卿,刘伟,李敬,等. 泡沫封堵能力影响因素实验研究[J]. 油气地质与采收率,2012,19(2):44-46,114.
[12]刁素,蒲万芬,黄禹忠,等. 新型耐温抗高盐驱油泡沫体系的确定[J]. 西南石油大学学报,2007(3):91-93,99.
[13]YEKEEN N,MANAN M A,IDRIS A K,et al. A comprehensive review of experimental studies of nanoparticles-stabilized foam for enhanced oil recovery[J]. Journal of petroleum science and engineering,2018,164:43-74.

相似文献/References:

[1]程 淼,王怀生,程 霜.pH敏感性可注射型醛基瓜尔豆胶-托普霉素自愈抗菌水凝胶及其性质[J].南京师大学报(自然科学版),2020,43(02):34.[doi:10.3969/j.issn.1001-4616.2020.02.007]
 Cheng Miao,Wang Huaisheng,Cheng Shuang.Injectable pH-sensitive Antibacterial Hydrogel Based onAldehyde-Guar and Tobramycin and Its Properties[J].Journal of Nanjing Normal University(Natural Science Edition),2020,43(02):34.[doi:10.3969/j.issn.1001-4616.2020.02.007]

备注/Memo

备注/Memo:
收稿日期:2020-10-11.
基金项目:中国石油天然气股份有限公司重大科技专项(2017E-1507).
通讯作者:王洪涛,高级工程师,应用化学专业,研究方向:油气田开发及提高采收率工作. E-mail:yjy_wanght@petrochina.com.cn
更新日期/Last Update: 2021-06-30