参考文献/References:
[1] SUN L H,SU M,YANG Z Z. An adaptive speech endpoint detection method in low SNR environments[J]. International journal of speech technology,2017,20(3):651-658.
[2]CAO D Y,XUE G,LEI G. An improved endpoint detection algorithm based on MFCC cosine value[J]. Wireless personal communications,2017,95(3):2073-2090.
[3]JIE L,ZHOU P,JING X,et al. Speech endpoint detection method based on TEO in noisy environment[J]. Procedia engineering,2012,29:2655-2660.
[4]LU J X,HAN X. Novel speech endpoint detection algorithm for voice detectors in interaction of intelligent terminals[J]. Sensors and transducers,2020,242(3):1-5.
[5]董胡. 基于先验信噪比和能零熵的语音端点检测算法[J]. 计算机技术与发展,2017,27(7):72-75.
[6]董胡,钱盛友. 改进的能量谱熵端点检测算法[J]. 测控技术,2016,35(6):26-29.
[7]陈昊泽,张志杰. 基于能量和频带方差结合的语音端点检测方法[J]. 科学技术与工程,2019,19(26):249-254.
[8]HSIEH C H,FENG T Y,HUANG P C. Energy-based VAD with grey magnitude spectral subtraction[J]. Speech communication,2009,51(9):810-819.
[9]张婷,何凌,黄华,等. 基于小波及能量熵的带噪语音端点检测算法[J]. 计算机工程与设计,2013,34(4):1331-1335.
[10]刘妮. 多特征和支持向量机相结合的语音端点检测模型[J]. 重庆邮电大学学报(自然科学版),2013,25(5):686-689.
[11]胡波,肖熙. 检测语音端点及基音的概率模型及方法[J]. 清华大学学报(自然科学版),2013,53(6):749-752.
[12]吴新忠,夏令祥,张旭,等. 基于谱熵梅尔积的语音端点检测方法[J]. 北京邮电大学学报,2019,42(2):87-93.
[13]SONG Q Q,YU F Q. Speech endpoint detection based on EMD and improved double threshold method[J]. Audio engineering,2009,33(8):60-63.
[14]DAVIS S V,MERMELSTEIN P. Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences[J]. IEEE transactions on acoustics speech and signal processing,1980,28(4):57-366.
[15]TIAN Y,WU J,WANG Z,et al. Fuzzy clustering and Bayesian information criterion based threshold estimation for robust voice activity detection[C]//IEEE International Conference on Acoustics. Hong Kong,China,2003:I444-I447.
[16]TIAN H,HONG G Z,ZHONG Z,et al. Auditory perception speech signal endpoint feature detection based on temporal structure[J]. Journal of Jilin University(engineering and technology edition),2019,49(1):313-318.