参考文献/References:
[1] 洪柳. 建筑火灾事故损失特性研究[J]. 建筑安全,2020,35(1):59-64.
[2]HOWARD A G,ZHU M,CHEN B,et al. Mobilenets:efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861,2017.https://arxiv.org/abs/1704.04861.
[3]SHARMA J,GRANMO O C,GOODWIN M. Deep CNN-ELM hybrid models for fire detection in images[C]//International Conference on Artificial Neural Networks. Cham:Springer,2018:245-259.
[4]LEE W,KIM S,LEE Y T,et al. Deep neural networks for wild fire detection with unmanned aerialehicle[C]//IEEE International Conference on Consumer Electronics. Las Vegas,USA:IEEE,2017.
[5]ZHANG D,HAN S,ZHAO J,et al. Image based forest fire detection using dynamic characteristics with artificial neural networks[C]//Iita International Joint Conference on Artificial Intelligence. Hainan Island,China,2009:290-293.
[6]黄文锋,徐珊珊,孙燚等. 基于多分辨率卷积神经网络的火焰检测[J]. 郑州大学学报(工学版),2019,40(5):80-84.
[7]江洋,白勇. 基于RetinaNet深度学习模型的火焰检测研究[J/OL]. 海南大学学报(自然科学版):1-7[2019-12-12]. http://kns.cnki.net/kcms/detail/46.1013.N.20191119.1528.010.html.
[8]LIU W,ANGUELOV D,ERHAN D,et al. SSD:single shot multibox detector[C]//European Conference on Computer Vision. Cham:Springer,2016:21-37.
[9]REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas,USA:IEEE,2016:779-788.
[10]FU C Y,LIU W,RANGA A,et al. Dssd:deconvolutional single shot detector[J]. arXiv preprint arXiv:1701.06659,2017.
[11]REDMON J,FARHADI A. Yolov3:an incremental improvement[J]. arXiv preprint arXiv:1804.02767,2018.
[12]BOCHKOVSKIY A,WANG C Y,LIAO H Y M. YOLOv4:optimal speed and accuracy of object detection[J]. Computer vision and pattern recognition,2020,17(9):198-215.
[13]REDMON J,FARHADi A. YOLO9000:better,faster,stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu,USA:IEEE,2017:7263-7271.
[14]张旭,李建胜,郝向阳,等. 基于差分筛选的YOLOv2监控视频目标检测方法[J]. 测绘科学技术学报,2018,35(6):616-621.
[15]REN S,HE K,GIRSHICK R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems. Montreal,2015:91-99.
[16]黄同愿,向国徽,杨雪姣. 基于深度学习的行人检测技术研究进展[J]. 重庆理工大学学报(自然科学),2019,33(4):98-109.
相似文献/References:
[1]严云洋,朱晓妤,刘以安,等.基于Faster R-CNN模型的火焰检测[J].南京师大学报(自然科学版),2018,41(03):1.[doi:10.3969/j.issn.1001-4616.2018.03.001]
Yan Yunyang,Zhu Xiaoyu,Liu Yian,et al.Flame Detection Based on Faster R-CNN Model[J].Journal of Nanjing Normal University(Natural Science Edition),2018,41(03):1.[doi:10.3969/j.issn.1001-4616.2018.03.001]
[2]郑 冬,李向群,许新征.基于轻量化SSD的车辆及行人检测网络[J].南京师大学报(自然科学版),2019,42(01):73.[doi:10.3969/j.issn.1001-4616.2019.01.012]
Zheng Dong,Li Xiangqun,Xu Xinzheng.Vehicle and Pedestrian Detection Model Based on Lightweight SSD[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(03):73.[doi:10.3969/j.issn.1001-4616.2019.01.012]
[3]蔡钟晟,陈 飞,曾勋勋.一种具有抗噪性能的圆形目标检测器[J].南京师大学报(自然科学版),2021,44(04):85.[doi:10.3969/j.issn.1001-4616.2021.04.011]
Cai Zhongsheng,Chen Fei,Zeng Xunxun.A Circular Object Detector with Anti-Noise Performance[J].Journal of Nanjing Normal University(Natural Science Edition),2021,44(03):85.[doi:10.3969/j.issn.1001-4616.2021.04.011]
[4]龚成张,严云洋,卞苏阳,等.基于Fast-CAANet的火焰检测方法[J].南京师大学报(自然科学版),2024,(02):109.[doi:10.3969/j.issn.1001-4616.2024.02.013]
Gong Chengzhang,Yan Yunyang,Bian Suyang,et al.Flame Detection Based on Fast-CAANet[J].Journal of Nanjing Normal University(Natural Science Edition),2024,(03):109.[doi:10.3969/j.issn.1001-4616.2024.02.013]