[1]侯欠欠,方志刚,秦 渝,等.探究团簇Fe4P的催化活性[J].南京师大学报(自然科学版),2021,44(04):17-24.[doi:10.3969/j.issn.1001-4616.2021.04.003]
 Hou Qianqian,Fang Zhigang,Qin Yu,et al.Electronic Properties and Magnetic Properties of Cluster Fe4P[J].Journal of Nanjing Normal University(Natural Science Edition),2021,44(04):17-24.[doi:10.3969/j.issn.1001-4616.2021.04.003]
点击复制

探究团簇Fe4P的催化活性()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第44卷
期数:
2021年04期
页码:
17-24
栏目:
·化学·
出版日期:
2021-12-15

文章信息/Info

Title:
Electronic Properties and Magnetic Properties of Cluster Fe4P
文章编号:
1001-4616(2021)04-0017-08
作者:
侯欠欠方志刚秦 渝许 友吕孟娜井润田
辽宁科技大学化学工程学院,辽宁 鞍山 114051
Author(s):
Hou QianqianFang ZhigangQin YuXu YouLü MengnaJing Runtian
School of Chemical Engineering,University of Science and Technology,Anshan 114501,China
关键词:
团簇Fe4P密度泛函理论费米能级催化性质能隙差
Keywords:
cluster Fe4Pdensity functional theoryFermi levelcatalytic propertyenergy gap difference
分类号:
O641.12
DOI:
10.3969/j.issn.1001-4616.2021.04.003
文献标志码:
A
摘要:
为探究团簇Fe4P具有最优催化活性的构型,根据密度泛函理论,在B3LYP/lanl2dz量子水平下,对团簇Fe4P的8种优化构型的能隙差、态密度图、前线轨道HOMO-LUMO图并依据库普曼斯定理进行分析,得出如下结论:团簇Fe4P具有较强的得失电子的能力; 二重态各优化构型的催化能力相似,且催化活性强于四重态; 构型1(2)的能隙差最小,亲电指数、电子亲和能最大,且HOMO、LUMO图几乎呈对称分布,表明其反应活性和催化能力最强,构型3(4)次之; 构型5(4)的能隙差最大,电负性最大,亲电指数和电子亲和能最小,且HOMO、LUMO图面积最小,即构型5(4)的催化能力最差. 表明构型1(2)为团簇Fe4P的最优催化构型.
Abstract:
To investigate the configuration of Fe4P with optimal catalytic activity,according to the density functional theory,the energy gap difference,density of states diagram,HOMO-LUMO diagram of frontier orbit of Fe4P 8 optimized configurations are analyzed at B3LYP/lanl2dz quantum level,and Kupmann’s theorem is used,the following conclusions are drawn:cluster Fe4P has a strong ability to gain and lose electrons; the catalytic ability of binary state is similar,and the catalytic activity is stronger than that of quadruple state; configuration 1(2) has the smallest gap difference,the largest electrophilic index and electron affinity energy,and the HOMO and LUMO diagrams almost symmetrical distribution shows that the reaction activity and catalytic ability of the catalyst are the strongest,followed by configuration 3(4); configuration 5(4) has the largest energy gap difference,the largest electronegativity,the smallest electrophilic index and electron affinity energy,and the smallest area of HOMO and LUMO,which means that configuration 5(4) has the worst catalytic ability. The results show that configuration 1(2) is the optimal catalytic configuration of Fe4P.

参考文献/References:

[1] DOMINKOVIC D F,BACEKOVIC I,PEDERSEN A S,et al. The future of transportation in sustainable energy systems:opportunities and barriers in a clean energy transition[J]. Renewable & sustainable energy reviews,2018,82(2):1823-1838.
[2]WALTER M G,WARREN E L,MCKONE J R,et al. Solar water splitting cells[J]. Chemical reviews,2010,110(11):6446-6473.
[3]MORALES-GUIO C G,STERN L A,HU X. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution[J]. Chemical society reviews,2014,43(18):6555-6569.
[4]KUNHIRAMAN A K. Hydrogen evolution reaction catalyzed by platinum nanoislands decorated on three-dimensional nanocarbon hybrid[J]. Ionics,2019,25(8):3787-3797.
[5]ESPOSITO D V,HUNT S T,STOTTLEMYER A L,et al. Low-cost hydrogen-evolution catalysts based on monolayer platinum on tungsten monocarbide substrates[J]. Angewandte chemie international edition,2010,49(51):9859-9862.
[6]TANG F M,SU H,ZHAO X,et al. Potential-driven surface active structure rearrangement over FeP@NC towards efficient electrocatalytic hydrogen evolution[J]. Physical chemistry chemical physics,2019,21(15):7918-7923.
[7]LIU M J,YANG L M,LIU T,et al. Fe2P/reduced grapheneoxide/Fe2P sandwich-structured nanowall arrays:a high-performance non-noble-metal electrocatalyst for hydrogen evolution[J]. Journal of materials chemistry,2017,5(18):8608-8615.
[8]LIN C,GAO Z F,YANG J H,et al. Porous superstructures constructed from ultrafine FeP nanoparticles for highly active and exceptionally stable hydrogen evolution reaction[J]. Journal of materials chemistry,2018,6(15):6387-6392.
[9]YAN Y,ZHAO B,YI S H,et al. Assembling pore-rich FeP nanorods on the CNT backbone as an advanced electrocatalyst for oxygen evolution[J]. Journal of materials chemistry,2016,4(33):13005-13010.
[10]HE F,LI K,XIE G Y,et al. Theoretical insights on the catalytic activity and mechanism for oxygen reduction reaction at Fe and P codoped graphene[J]. Physical chemistry chemical physics,2016,18(18):12675-12681.
[11]LI G L,YUAN L F,CHEN W W,et al. Efficient hierarchically synthesized Fe2P nanoparticles embedded in an N,P-doped mesoporous carbon catalyst for the oxygen reduction reaction[J]. New journal of chemistry,2018,42(12):9488-9495.
[12]SINGH K P,BAE E J,YU J S. Fe-P:A new class of electroactive catalyst for oxygen reduction reaction[J]. Journal of the American chemical society,2015,137(9):3165-3168.
[13]ZHAO Z Y,LIU L L,ZHANG S T,et al. Phase diagram,stability and electronic properties of an Fe-P system under high pressure:a first principles study[J]. RSC advances,2017,7(26):15986-15991.
[14]BECKE A D. Density-functional thermochemistry. III. The role of exact exchange[J]. Journal of chemical physics,1993,98(7):5648-5652.
[15]秦渝,方志刚,张伟,等. 团簇Co3NiB催化析氢活性研究[J]. 江西师范大学学报(自然科学版),2020,44(1):56-62.
[16]李历红,方志刚,赵振宁,等. 团簇Ni3CoP电子性质与磁性研究[J]. 江西师范大学学报(自然科学版),2019,43(2):54-60.
[17]杨广丽,岳瑞英,赵健,等. 吸附在TiO2(110)表面的Au(n-1)Ag(n=1-5)团簇的第一性原理研究[J]. 南京师大学报(自然科学版),2016,39(2):38-43.
[18]YU X G. Hyperbolic multi-topology and the basic principle in quantum mechanics[J]. Advances in applied clifford algebras,1999,9(1):109-118.
[19]秦渝,方志刚,张伟,等. 团簇Co3NiB2催化性质研究[J]. 辽宁科技大学学报,2019,42(5):365-370.
[20]李雯博,方志刚,刘大永,等. 非晶态合金Co3B2稳定结构、组成和电子性质[J]. 辽宁科技大学学报,2016,39(2):113-118.
[21]廖薇,方志刚,赵振宁,等. 团簇Fe3Cr3的电子性质与成键[J]. 辽宁科技大学学报,2019,42(2):101-106.
[22]HAY P J. Gaussian basis sets for molecular calculations. The representation of 3d orbitals in transition-metal atoms[J]. Journal of chemical physics,1977,66(10):4377-4384.
[23]HAY P J,WADT W R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg[J]. Journal of chemical physics,1985,82(1):270-283.
[24]WATANABE K,NAKAYAMA T,MOTTL J. Ionization potentials of some molecules[J]. Journal of quantitative spectroscopy & radiative transfer,1962,2(4):369-382.
[25]KENDALL R A,DUNNING T H,HARRISON R J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions[J]. Journal of chemical physics,1992,96(9):6796-6806.
[26]PARR R G,DONNELLY R A,LEVY M,et al. Electronegativity:the density functional viewpoint[J]. Journal of chemical physics,1978,68(8):3801-3807.
[27]LORQUET J C. Ionization potential of ammonia—some implications concerning Koopman’s theorem[J]. Reviews of modern physics,1960,32(2):312-312.

相似文献/References:

[1]郑建辉,王成,朱小蕾,等.Pt_2O~ +催化N_2O+CO反应的理论研究[J].南京师大学报(自然科学版),2012,35(02):72.
 Zheng Jianhui,Wang Cheng,Zhu Xiaolei.Theoretical Investigation on Reaction of N2O and CO Catalyzed by Pt2O+[J].Journal of Nanjing Normal University(Natural Science Edition),2012,35(04):72.
[2]顾景阳,茅若晨,江丽芝,等.新设计的碳纳米管锂盐的第一超极化率的理论研究[J].南京师大学报(自然科学版),2012,35(01):66.
 Gu Jingyang,Mao Ruochen,Jiang Lizhi,et al.Theoretical Study on the First Hyperpolarizability of New Lithium Salt(Li-CNTs)[J].Journal of Nanjing Normal University(Natural Science Edition),2012,35(04):66.
[3]郭小建,陈 宣,邓开明,等.镧系金属锡球烯MSn12(M=La,Pr,Nd,Pm,Sm,Eu, Tb,Dy,Ho,Er,Tm,Yb,Lu)几何结构和磁性研究[J].南京师大学报(自然科学版),2013,36(04):67.
 Guo Xiaojian,Chen Xuan,Deng Kaiming,et al.Geometric and Magnetic Properties of Exohedral Lanthanide Stannaspherenes MSn12(M=La,Pr,Nd,Pm,Sm, Eu,Tb,Dy,Ho,Er,Tm,Yb,Lu)[J].Journal of Nanjing Normal University(Natural Science Edition),2013,36(04):67.
[4]王 成,崔文文,邵景玲,等.Cn B4( n = 2 ~ 7) 团簇的结构、稳定性和成键性质[J].南京师大学报(自然科学版),2014,37(02):79.
 Wang Cheng,Cui Wenwen,Shao Jingling,et al.Structure,Stability and Bonding Nature of Cn B4( n = 2 ~ 7)Clusters[J].Journal of Nanjing Normal University(Natural Science Edition),2014,37(04):79.
[5]杨广丽,岳瑞英,赵 健,等.吸附在TiO2(110)表面的Aun-1Ag(n=1-5)团簇的第一性原理研究[J].南京师大学报(自然科学版),2016,39(02):38.[doi:10.3969/j.issn.1001-4616.2016.02.008]
 Yang Guangli,Yue Ruiying,Zhao Jian,et al.A First Principles Study on Aun-1Ag(n=1-5)ClustersAdsorbed on TiO2(110)Surface[J].Journal of Nanjing Normal University(Natural Science Edition),2016,39(04):38.[doi:10.3969/j.issn.1001-4616.2016.02.008]
[6]王 丽,岳瑞英,朱小蕾.平面BnCPt(n=1-5)团簇的结构、稳定性和成键性质的密度泛函理论研究[J].南京师大学报(自然科学版),2017,40(04):74.[doi:10.3969/j.issn.1001-4616.2017.04.012]
 Wang Li,Yue Ruiying,Zhu Xiaolei.Study of Structure,Stability,and Bond Nature of Planar BnCPt(n=1-5)Clusters Based on Density Functional Theory[J].Journal of Nanjing Normal University(Natural Science Edition),2017,40(04):74.[doi:10.3969/j.issn.1001-4616.2017.04.012]
[7]李成刚,崔颍琦,田 浩,等.过渡金属掺杂硼团簇几何结构、电子及热力学特性研究[J].南京师大学报(自然科学版),2022,45(04):35.[doi:10.3969/j.issn.1001-4616.2022.04.006]
 Li Chenggang,Cui Yingqi,Tian Hao,et al.Study on Geometric Structures,Electronic and Thermodynamics Properties of Transition Metal Doped Boron Clusters[J].Journal of Nanjing Normal University(Natural Science Edition),2022,45(04):35.[doi:10.3969/j.issn.1001-4616.2022.04.006]

备注/Memo

备注/Memo:
收稿日期:2020-12-07.
基金项目:国家自然科学基金重点项目(51634004)、国家级大学生创新创业训练计划项目(202010146009、202010146016)、辽宁省大学生创新创业训练计划项目(202010146015、202010146052、202010146059).
通讯作者:方志刚,博士,教授,博士生导师,研究方向:主要从事量子化学、物理化学及表面催化等方面的研究. E-mail:LNFZG@163.com
更新日期/Last Update: 2021-12-15