[1]谷 龙,章纬菁,于芳芳,等.瓶鼻海豚(Tursiops truncatus)及其近缘物种牛(Bos taurus)TLR8基因免疫应答功能的探究[J].南京师大学报(自然科学版),2021,44(04):43-52.[doi:10.3969/j.issn.1001-4616.2021.04.006]
 Gu Long,Zhang Weijing,Yu Fangfang,et al.Research on TLR8 Gene Immune Response Function of BottlenoseDolphins(Tursiops truncatus)and Cattle(Bos taurus)[J].Journal of Nanjing Normal University(Natural Science Edition),2021,44(04):43-52.[doi:10.3969/j.issn.1001-4616.2021.04.006]
点击复制

瓶鼻海豚(Tursiops truncatus)及其近缘物种牛(Bos taurus)TLR8基因免疫应答功能的探究()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第44卷
期数:
2021年04期
页码:
43-52
栏目:
·生物学·
出版日期:
2021-12-15

文章信息/Info

Title:
Research on TLR8 Gene Immune Response Function of BottlenoseDolphins(Tursiops truncatus)and Cattle(Bos taurus)
文章编号:
1001-4616(2021)04-0043-10
作者:
谷 龙章纬菁于芳芳任文华
南京师范大学生命科学学院,江苏 南京 210023
Author(s):
Gu LongZhang WeijingYu FangfangRen Wenhua
School of Life Sciences,Nanjing Normal University,Nanjing 210023,China
关键词:
瓶鼻海豚TLR8基因NF-κBIL-8
Keywords:
Tursiops truncatusBos taurusTLR8NF-κBIL-8
分类号:
Q594
DOI:
10.3969/j.issn.1001-4616.2021.04.006
文献标志码:
A
摘要:
鲸类是陆生哺乳动物的后代,大约在5 600万年前从陆地过渡到海洋,鲸类自身免疫机能为了应对海洋病原体的挑战发生了适应进化. TLR8基因属于病毒型Toll样受体家族成员,被病原体诱导后激活下游信号通路,在调节机体抵抗病原体感染的免疫方面发挥着重要作用. 本研究分析了瓶鼻海豚(Tursiops truncatus)及其近缘陆生物种牛(Bos taurus)的TLR8基因的结构,克隆了TLR8基因并构建重组质粒转染人胚肾细胞系HEK293细胞,再用TLR8人工合成激动剂R848刺激该细胞,检测TLR8信号通路下游基因NF-κB和IL-8的表达差异. 实验结果表明,两个物种的NF-κB和IL-8表达量均显著高于空载体转染组,而瓶鼻海豚的表达量又均低于牛. 由此推测,在应对异源刺激时TLR8基因发挥了免疫功能,为了适应不同于陆地环境的海洋环境,鲸类采取了和陆生哺乳动物不同的应对策略和模式.
Abstract:
Cetaceans are the descendants of terrestrial mammals. They transitioned from land to ocean about 56 million years ago. The autoimmune function of cetaceans evolved to meet the challenges of marine pathogens. TLR8 gene is a member of the viral Toll-like receptor family. It activates downstream signal pathways after being induced by pathogens,and plays an important role in regulating the body’s immunity against pathogen infection. In this study,we analyzed the structure of the TLR8 gene of the bottlenose dolphin(Tursiops truncatus)and cattle(Bos taurus),cloned the TLR8 gene and constructed a recombinant plasmid to transfect the human embryonic kidney cell line HEK293 cells,and then stimulated the TLR8 synthetic agonist R848 Cells,to detect the differences in the expression of NF-κB and IL-8 downstream of the TLR8 signaling pathway. The experimental results showed that the expression levels of NF-κB and IL-8 of the two species were significantly higher than those of the empty vector transfection group,while the expression levels of bottlenose dolphins were lower than those of cattle. It is speculated that the TLR8 gene exerts an immune function in response to heterologous stimuli. In order to adapt to the marine environment different from the terrestrial environment,cetaceans have adopted different coping strategies and models from terrestrial animals.

参考文献/References:

[1] THEWISSEN J G M,COOPER L N,CLEMENTZ M T,et al. Whales originated from aquatic artiodactyls in the Eocene epoch of India[J]. Nature,2007,450(7173):1190-1194.
[2]MCCALLUM H,HARVELL D,DOBSON A. Rates of spread of marine pathogens[J]. Ecology letters,2003,6(12):1062-1067.
[3]BEINEKE A,SIEBERT U,WOHLSEIN P,et al. Immunology of whales and dolphins[J]. Veterinary immunology & immunopathology,2010,133(2-4):81-94.
[4]XU S,REN W,ZHOU X,et al. Sequence polymorphism and geographical variation at a positively selected MHC-DRB gene in the finless porpoise(Neophocaena phocaenoides):implication for recent differentiation of the Yangtze Finless porpoise?[J]. Journal of molecular evolution,2010,71(1):6-22.
[5]GUI D,JIA K,XIA J,et al. De novo assembly of the Indo-Pacific humpback dolphin leucocyte transcriptome to identify putative genes involved in the aquatic adaptation and immune response[J]. PLoS one,2013,8(8):e72417.
[6]SHEN T,XU S,WANG X,et al. Adaptive evolution and functional constraint at TLR4 during the secondary aquatic adaptation and diversification of cetaceans[J]. BMC evolutionary biology,2012,12(1):39.
[7]TIAN R,CHEN M,CHAI S,et al. Divergent selection of pattern recognition receptors in mammals with different ecological characteristics[J]. Journal of molecular evolution,2018,86(2):138-149.
[8]XU S,TIAN R,LIN Y,et al. Widespread positive selection on cetacean TLR extracellular domain[J]. Molecular immunology,2019,106:135-142.
[9]TIAN R,SEIM I,ZHANG Z,et al. Distinct evolution of toll-like receptor signaling pathway genes in cetaceans[J]. Genes & genomics,2019,41(12):1417-1430.
[10]TAKEDA K,AKIRA S. TLR signaling pathways.[J]. Seminars in immunology,2004,16(1):3-9.
[11]ROACH J C,GLUSMAN G,ROWEN L,et al. The evolution of vertebrate Toll-like receptors[J]. Proceedings of the national academy of sciences,2005,102(27):9577-9582.
[12]TEMPERLEY N D,BERLIN S,PATON I R,et al. Evolution of the chicken Toll-like receptor gene family:a story of gene gain and gene loss[J]. BMC genomics,2008,9(1):62.
[13]冯悦,夏雪山. 病毒相关Toll样受体研究进展[J]. 现代免疫学,2007,27(5):434-438.
[14]ROACH J C,GLUSMAN G,ROWEN L,et al. The evolution of vertebrate Toll-like receptors[J]. Proceedings of the national academy of sciences,2005,102(27):9577-9582.
[15]IWASAKI A,MEDZHITOV R. Toll-like receptor control of the adaptive immune responses[J]. Nature immunology,2004,5(10):987-995.
[16]O’NEILL L A J,BOWIE A G. The family of five:TIR-domain-containing adaptors in Toll-like receptor signalling[J]. Nature reviews immunology,2007,7(5):353-364.
[17]HERBERHOLD S,COCH C,ZILLINGER T,et al. Delivery with polycations extends the immunostimulant Ribomunyl into a potent antiviral Toll-like receptor 7/8 agonist[J]. Antiviral therapy,2011,16(5):751.
[18]GAY N J,GANGLOFF M. Structure and function of Toll receptors and their ligands[J]. Annual review of biochemistry,2007,76:141-165.
[19]XU S,TIAN R,LIN Y,et al. Widespread positive selection on cetacean TLR extracellular domain[J]. Molecular immunology,2019,106:135-142.
[20]TAKEUCHI O,AKIRA S. Recognition of viruses by innate immunity[J]. Immunological reviews,2007,220(1):214-224.
[21]MUKHERJEE S,SARKAR R N,WAGENER D K,et al. Signatures of natural selection are not uniform across genes of innate immune system,but purifying selection is the dominant signature[J]. Proceedings of the national academy of sciences,2009,106(17):7073-7078.
[22]BARREIRO L B,BEN-ALI M,QUACH H,et al. Evolutionary dynamics of human Toll-like receptors and their different contributions to host defense[J]. PLoS genetics,2009,5(7):e1000562.
[23]SHEN T,XU S,WANG X,et al. Adaptive evolution and functional constraint at TLR4 during the secondary aquatic adaptation and diversification of cetaceans[J]. BMC evolutionary biology,2012,12(1):39.
[24]NAKAJIMA T,OHTANI H,SATTA Y,et al. Natural selection in the TLR-related genes in the course of primate evolution[J]. Immunogenetics,2008,60(12):727-735.
[25]BELL J K,MULLEN G E,LEIFER C A,et al. Leucine-rich repeats and pathogen recognition in Toll-like receptors[J]. Trends in immunology,2003,24(10):528-533.
[26]FORSBACH A,NEMORIN J G,MONTINO C,et al. Identification of RNA sequence motifs stimulating sequence-specific TLR8-dependent immune responses[J]. The journal of immunology,2008,180(6):3729-3738.
[27]ZHOU Z,SUN L. Immune effects of R848:evidences that suggest an essential role of TLR7/8-induced,Myd88- and NF-κB-dependent signaling in the antiviral immunity of Japanese flounder(Paralichthys olivaceus)[J]. Developmental & comparative immunology,2015,49(1):113-120.
[28]HACKSTEIN H,KNOCHE A,NOCKHER A,et al. The TLR7/8 ligand resiquimod targets monocyte-derived dendritic cell differentiation via TLR8 and augments functional dendritic cell generation[J]. Cellular immunology,2011,271(2):401-412.
[29]LIU J,XU C,HSU L C,et al. A five-amino-acid motif in the undefined region of the TLR8 ectodomain is required for species-specific ligand recognition[J]. Molecular immunology,2010,47(5):1083-1090.
[30]GORDEN K K B,QIU X X,BINSFELD C C A,et al. Cutting edge:activation of murine TLR8 by a combination of imidazoquinoline immune response modifiers and polyT oligodeoxynucleotides[J]. The journal of immunology,2006,177(10):6584-6587.
[31]HEMMI H,KAISHO T,TAKEUCHI O,et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway[J]. Nature immunology,2002,3(2):196-200.
[32]WANG Z,CHEN Z,XU S,et al. ‘Obesity’is healthy for cetaceans?Evidence from pervasive positive selection in genes related to triacylglycerol metabolism[J]. Scientific reports,2015,5:14187.
[33]FUHRMAN J A. Marine viruses and their biogeochemical and ecological effects[J]. Nature,1999,399(6736):541-548.
[34]JIANG S,STEWARD G,JELLISON R,et al. Abundance,distribution,and diversity of viruses in alkaline,hypersaline Mono Lake,California[J]. Microbial ecology,2004,47(1):9-17.
[35]WOMMACK K E,COLWELL R R. Virioplankton:viruses in aquatic ecosystems[J]. Microbiology and molecular biology reviews,2000,64(1):69-114.
[36]MANTOVANI M,RUSCHEL A R,PUCHALSKI A,et al. Diversity of species and successional structure of a secondary formation in an Atlantic rain forest[J]. Scientia forestalis(Brazil),2005,(67):141-142.
[37]SUTTLE C A. Marine viruses—major players in the global ecosystem[J]. Nature reviews microbiology,2007,5(10):801-812.
[38]WEITZ J S,WILHELM S W. Ocean viruses and their effects on microbial communities and biogeochemical cycles[J]. F1000 biology reports,2012,4:17.

备注/Memo

备注/Memo:
收稿日期:2020-11-23.
基金项目:国家自然科学基金面上项目(31872219、31370401、31772448、31630071).
通讯作者:任文华,博士,教授,研究方向:生物化学与分子生物学. E-mail:08162@njnu.edu.cn
更新日期/Last Update: 2021-12-15