参考文献/References:
[1] KENNEDY J,EBERHART R. Particle swarm optimization[C]//Proceedings of ICNN’95-International Conference on Neural Networks,Perth,WA,Australia. IEEE,1995,4:1942-1948.
[2]LIAN J,YU W,XIAO K,et al. Cubic spline interpolation-based robot path planning using a chaotic adaptive particle swarm optimization algorithm[J]. Mathematical problems in engineering,2020(3):1-20.
[3]居佳琪,王琦,唐小波,等. 基于双重粒子群算法的电动汽车参与配网优化调度[J]. 南京师范大学学报(工程技术版),2018,18(1):11-23.
[4]程泽,董梦男,杨添剀,等. 基于自适应混沌粒子群算法的光伏电池模型参数辨识[J]. 电工技术学报,2014,29(9):245-252.
[5]韦苗苗,江铭炎. 基于粒子群优化算法的多阈值图像分割[J]. 山东大学学报(工学版),2005,35(6):118-121.
[6]王凌,刘波. 微粒群优化与调度算法[M]. 北京:清华大学出版社,2008.
[7]SHI Y,EBERHART R. A modified particle swarm optimizer[C]//1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence(Cat. No. 98TH8360),Anchorage,AK,USA. 1998,4:69-73.
[8]LIU H,ZHANG X W,TU L P. A modified particle swarm optimization using adaptive strategy[J]. Expert systems with applications,2020,152:113353.
[9]姜建国,田旻,王向前,等. 采用扰动加速因子的自适应粒子群优化算法[J]. 西安电子科技大学学报,2012,39(4):74-80.
[10]顾明亮,李旻. 基于动态调整惯性权重的混合粒子群算法[J]. 计算机与现代化,2018(6):25-29.
[11]DEEP K,BANSAL J C. Mean particle swarm optimisation for function optimization[J]. International journal of computational intelligence studies,2009,1(1):72-92.
[12]胡旺,李志蜀. 一种更简化而高效的粒子群优化算法[J]. 软件学报,2007,18(4):861-868.
[13]LIU H R,CUI J C,LU Z D,et al. A hierarchical simple particle swarm optimization with mean dimensional information[J]. Applied soft computing,2019,76:712-725.
[14]陆松建,司伟立,韩娟,等. 逃逸均值简化粒子群优化算法[J]. 计算机工程与设计,2020,41(9):2623-2629.
[15]ZHANG X W,LIU H,ZHANG T,et al. Terminal crossover and steering-based particle swarm optimization algorithm with disturbance[J]. Applied soft computing,2019,85:105841.
[16]CHENG R,JIN Y. A social learning particle swarm optimization algorithm for scalable optimization[J]. Information sciences,2015,291:43-60.
[17]GAO W F,LIU S Y,HUANG L L. Particle swarm optimization with chaotic opposition-based population initialization and stochastic search technique[J]. Communications in nonlinear science & numerical simulation,2012,17(11):4316-4327.
[18]吴润秀,孙辉,朱德刚,等. 具有高斯扰动的最优粒子引导粒子群优化算法[J]. 小型微型计算机系统,2016,37(1):146-151.
相似文献/References:
[1]朱 莹,刘学军,赵 静.DEM内插邻域自适应确定方法[J].南京师大学报(自然科学版),2013,36(01):122.
Zhu Ying,Liu Xuejun,Zhao Jing.An Adaptive Method of Determining DEM Interpolation Neighbors[J].Journal of Nanjing Normal University(Natural Science Edition),2013,36(01):122.
[2]屈正庚,杨 川.基于改进蚁群算法的移动机器人全局轨迹规划研究[J].南京师大学报(自然科学版),2015,38(01):81.
Qu Zhenggeng,Yang Chuan.Research on Global Path Planning for Mobile Robot Based onImproved Ant Colony Optimization Algorithm[J].Journal of Nanjing Normal University(Natural Science Edition),2015,38(01):81.
[3]杨 洋,王汝传.增强现实中基于LBS的双重匿名位置隐私保护方法[J].南京师大学报(自然科学版),2018,41(03):42.[doi:10.3969/j.issn.1001-4616.2018.03.007]
Yang Yang,Wang Ruchuan.Double Anonymity Location Privacy ProtectionBased on LBS in Augment Reality[J].Journal of Nanjing Normal University(Natural Science Edition),2018,41(01):42.[doi:10.3969/j.issn.1001-4616.2018.03.007]
[4]曹文梁,康岚兰,王 石.动态环境下的自适应反向扩散演化算法[J].南京师大学报(自然科学版),2020,43(04):119.[doi:10.3969/j.issn.1001-4616.2020.04.017]
Cao Wenliang,Kang Lanlan,Wang Shi.An Adaptively Reversed Diffuse Evolutionary Algorithmin Dynamic Environments[J].Journal of Nanjing Normal University(Natural Science Edition),2020,43(01):119.[doi:10.3969/j.issn.1001-4616.2020.04.017]