参考文献/References:
[1] 黎锦熙. 论现代汉语中的量词[M]. 北京:商务印书馆,1978.
[2]白晓革,李义杰. 数量短语的构成模式及其识别[C]//第三届HNC与语言学研究学术研讨会论文集,北京,2005:171-178.
[3]张玲,熊文,李义杰,等. 基于知识库的现代汉语数量短语的识别[C]//第七届中文信息处理国际会议论文集,武汉,2007:295-299.
[4]熊文,张玲. 一种基于规则不依赖于分词的中文数量短语的识别[C]//第七届中文信息处理国际会议论文集,武汉,2007:36-40.
[5]方芳,李斌. 基于语料库的数量名短语识别[C]//第三届学生计算语言学研讨会论文集,沈阳,2006:331-337.
[6]PINHEIRO P H O,COLLOBERT R. Recurrent convolutional neural networks for scene parsing[EB/OL].(2013-06-12)
[2019-11-4]. //https://arxiv.org/abs/1306.2795.
[7]HUANG Z H,XU W,YU K. Bidirectional LSTM-CRF models for sequence tagging[EB/OL].(2015-08-09)
[2019-11-4]. https://arxiv.org/abs/1508.01991.
[8]CHIU J P C,NICHOLS E. Named entity recognition with bidirectional LSTM-CNNs[J]. Transaction of the association of computational linguistics,2016(4):357-370.
[9]曲维光,周俊生,吴晓东,等. 自然语言句子抽象语义表示AMR研究综述[J]. 数据采集与处理,2017,32(1):26-36.
[10]李斌,闻媛,宋丽,等. 融合概念对齐信息的中文AMR语料库的构建[J]. 中文信息学报,2017,31(6):93-102.
[11]PETERS M E,NEUMANN M,LYYER M,et al. Deep contextualized word representations[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,New Orleans,Louisiana,United States of America. 2018:2227-2237.
[12]DEVLIN J,CHANG M W,LEE K,et al. BERT:Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,2019(1):4171-4186.
[13]VASWANI A,SHAZEER N,PARMAR N,et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30:Annual Conference on Neural Information Processing Systems,2017:5998-6008.
[14]HOCHREITER S,SCHMIDHUBER J. Long short-term memory[J]. Neural computation,1997,9(8):1735-1780.
[15]ZHANG Y,YANG J. Chinese NER using lattice LSTM[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics,2018:1554-1564.
[16]LAFFERTY J D,MCCALLUM A,PEREIRA F C N. Conditional random fields:probabilistic models for segmenting and labeling sequence data[C]//Proceedings of the Eighteenth International Conference on Machine Learning,2001:282-289.
[17]RATINOV L,ROTH D. Design challenges and misconceptions in named entity recognition[C]//Proceedings of the Thirteenth Conference on Computational Natural Language Learning,2009:147-155.
[18]SRIVASTAVA N,HINTON G E,KRIZHEVSKY A,et al. Dropout:a simple way to prevent neural networks from overfitting[J]. Journay machine learning research,2014,15(1):1929-1958.
[19]ZEILER M D. ADADELTA:an adaptive learning rate method[EB/OL].(2012-12-22)
[2019-11-4]. //https://arxiv.org/abs/1212.5701.
[20]KINGMA D P,BA J. Adam:a method for stochastic optimization[C]//3rd International Conference on Learning Representations,2015:arXiv:1412.6980.
[21]DAUPHIN Y N,VRIES H D,BENGIO Y. Equilibrated adaptive learning rates for non-convex optimization[C]//Advances in Neural Information Processing Systems 28:Annual Conference on Neural Information Processing Systems,2015:1504-1512.