[1]谢 娜,谭文安,孙 勇,等.多边缘服务器协作环境下基于时延感知的服务选择算法[J].南京师大学报(自然科学版),2022,45(02):126-135.[doi:10.3969/j.issn.1001-4616.2022.02.016]
 Xie Na,Tan Wenan,Sun Yong,et al.Service Selection Algorithm Based on Latency-Aware in a Multiple Edge Server Cooperation Environment[J].Journal of Nanjing Normal University(Natural Science Edition),2022,45(02):126-135.[doi:10.3969/j.issn.1001-4616.2022.02.016]
点击复制

多边缘服务器协作环境下基于时延感知的服务选择算法()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第45卷
期数:
2022年02期
页码:
126-135
栏目:
·计算机科学与技术·
出版日期:
2022-05-15

文章信息/Info

Title:
Service Selection Algorithm Based on Latency-Aware in a Multiple Edge Server Cooperation Environment
文章编号:
1001-4616(2022)02-0126-10
作者:
谢 娜1谭文安12孙 勇3赵 璐1黄 黎14
(1.南京航空航天大学计算机科学与技术学院,江苏 南京 211106)(2.上海第二工业大学计算机与信息工程学院,上海 201209)(3.南京师范大学地理科学学院,江苏 南京 210023)(4.江苏开放大学信息与机电工程学院,江苏 南京 210017)
Author(s):
Xie Na1Tan Wenan12Sun Yong3Zhao Lu1Huang Li14
(1.School of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China)(2.School of Computer and Information,Shanghai Polytechnic University,Shanghai 201209,China)(3.School of Geographical Sciences,Nanjing N
关键词:
移动边缘计算启发式算法时延感知服务选择
Keywords:
mobile edge computingheuristic algorithmlatency-awareservice selection
分类号:
TP391
DOI:
10.3969/j.issn.1001-4616.2022.02.016
文献标志码:
A
摘要:
移动边缘计算可为用户提供低时延的服务. 然而,随着用户的需求变得日益复杂多样,单个边缘服务器难以满足其需求. 因此,多边缘服务器协作环境下的服务选择问题成为服务计算领域的热点难题. 本文首先将该问题建模成带约束的最优化问题,然后提出了一种启发式的服务选择算法-LLMES算法. 该算法是在边缘服务器网络中根据迪杰斯特拉算法求解当前本地服务器的邻居节点作为候选服务器,并基于低时延多有效服务的贪心选择策略选择为用户提供有效服务最多且时延最小的服务器作为当前最优服务器. 从而选择出一组相互协作的边缘服务器集合共同为用户提供服务,即选中一组满足用户需求的服务. 最后,实验结果表明本文提出的LLMES算法性能明显优于其他3种具有代表性的算法.
Abstract:
Mobile edge computing can provide low latency services for users.However,as the requirements of users become increasingly complex and diverse,it is difficult for a single edge server to meet their needs. Therefore,the service selection problem in a multiple edge server cooperation environment has become a hot issue in the field of service computing. In this paper,the problem is modeled as a constrained optimization problem,and then a heuristic service selection algorithm named the LLMES algorithm is proposed. The algorithm selects the neighbor nodes of the current local server as candidate servers according to the Dijkstra algorithm in the edge server network,chooses an edge server that provides the most effective services with the least latency for users as the current optimal server based on the greedy selection strategy of low latency and multiple effective services. Thus,a group of cooperative edge servers is selected to provide services for users,that is,a group of services that meet the requirement of users is selected. Finally,experimental results show that the performance of the LLMES algorithm proposed in this paper outperforms significantly three representative approaches.

参考文献/References:

[1] ZANELLA A,BUI N,CASTELLANI A,et al. Internet of Things for smart cities[J]. IEEE internet of things journal,2014,1(1):22-32.
[2]DEBAUCHE O,MAHMOUDI S,MAHMOUDI S A,et al. Edge computing and artificial intelligence for real-time poultry monitoring[J]. Procedia computer,2020,175(1):534-541.
[3]崔勇,宋健,缪葱葱,等. 移动云计算研究进展与趋势[J]. 计算机学报,2017,40(2):273-295.
[4]DENG S G,HUANG L T,HU D N,et al. Mobility-enabled service selection for composite services[J]. IEEE transactions on services computing,2016,9(3):394-407.
[5]YU H Y,LIU C Y,REN Y L,et al. Service node selection optimization for mobile crowd sensing in a road network environment[J]. Vehicular communications,2020,22(4):100203.1-100203.14.
[6]DENG S G,WU H Y,TAN W,et al. Mobile service selection for composition:an energy consumption perspective[J]. IEEE transactions on automation science and engineering,2017,14(3):1478-1490.
[7]TONG E D,CHEN L,LI H Z. Energy-aware service selection and adaptation in wireless sensor networks with QoS guarantee[J]. IEEE transactions on services computing,2020,13(5):829-842.
[8]ZHANG W W,WEN Y G. Energy-efficient task execution for application as a general topology in mobile cloud computing[J]. IEEE transactions on cloud computing,2015,6(3):708-719.
[9]赵梓铭,刘芳,蔡志平,等. 边缘计算:平台、应用与挑战[J]. 计算机研究与发展,2018,55(2):327-337.
[10]HU Y C,PATEL M,SABELLA D,et al. Mobile edge computing—a key technology towards 5G[J]. ETSI white paper,2015,11(11):1-16.
[11]MAO Y Y,YOU C S,ZHANG J,et al. A survey on mobile edge computing:the communication perspective[J]. IEEE communications surveys & tutorials,2017,19(4):2322-2358.
[12]乐光学,戴亚盛,杨晓慧,等. 边缘计算可信协同服务策略建模[J]. 计算机研究与发展,2020,57(5):1080-1102.
[13]WU H Y,DENG S G,LI W,et al. Service selection for composition in mobile edge computing systems[C]//2018 IEEE international conference on Web services,San Francisco,CA,USA,2018:355-358.
[14]刘伟,黄宇成,杜薇,等. 移动边缘计算中资源受限的串行任务卸载策略[J]. 软件学报,2020,31(6):309-328.
[15]XIE N,TAN W A,ZHENG X R,et al. An efficient two-phase approach for reliable collaboration-aware service composition in cloud manufacturing[J]. Journal of industrial information integration,2021,23(2):1-12.
[16]GUO H Z,LIU J J. Collaborative computation offloading for multi-access edge computing over fiber-wireless networks[J]. IEEE transactions on vehicular technology,2018,67(5):4514-4526.
[17]CHEN L X,ZHOU S,XU J. Computation peer offloading for energy-constrained mobile edge computing in small-cell networks[J]. IEEE/ACM transactions on networking,2018,26(4):1619-1632.
[18]DENG S G,XIANG Z,TAHERI J,et al. Optimal application deployment in resource constrained distributed edges[J]. IEEE transactions on mobile computing,2020,20(5):1907-1923.
[19]GUI G M,HE Q,CHEN F F,et al. Trading off between multi-tenancy and interference:a service user allocation game[J/OL]. IEEE transactions on services computing,2020. Available:10.1109/TSC.2020.3028760.
[20]DENG S G,XIANG Z Z,ZHAO P,et al. Dynamical resource allocation in edge for trustable IoT systems:a reinforcement learning method[J]. IEEE transactions on industrial informatics,2020,16(9):6103-6113.
[21]XIA X Y,CHEN F F,HE Q,et al. Cost-effective app data distribution in edge computing[J]. IEEE transactions on parallel and distributed systems,2021,32(1):31-44.
[22]PASTERIS S,WANG S Q,HERBSTER M,et al. Service placement with provable guarantees in heterogeneous edge computing systems[C]//IEEE conference on computer communications. Chengdu,China,2019:514-522.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金项目(61672022、U1904186).
通讯作者:谭文安,博士,教授,博士生导师,研究方向:服务计算、边缘计算、群智协同计算等. E-mail:wtan@foxmail.com
更新日期/Last Update: 1900-01-01