参考文献/References:
[1]MCDONALD D,GRANTHAM W,TABOR W,et al. Response surface model development for global/local optimization using radial basis functions[C]//In 8th Symposium on Multidisciplinary Analysis and Optimization,Long Beach,CA,USA,2013.
[2]LIU B,ZHANG Q,GIELEN G. A gaussian process surrogate model assisted evolutionary algorithm for medium scale expensive optimization problems[J]. IEEE transactions on evolutionary computation,2014,18(2):180-192.
[3]ZHENG Y,FU X,XUAN Y. Data-driven optimization based on random forest surrogate[C]//In 2019 6th International Conference on Systems and Informatics(ICSAI),Shanghai,China,2019.
[4]KRITHIKAA M,MALLIPEDDI R. Differential evolution with an ensemble of low-quality surrogates for expensive optimization problems[C]//In 2016 IEEE Congress on Evolutionary Computation(CEC),Vancouver,BC,Canada,2016.
[5]JIN Y. Surrogate-assisted evolutionary computation:Recent advances and future challenges[J]. Swarm and evolutionary computation,2011,1(2):61-70.
[6]WANG H,JIN Y,DOHERTY J. Committee-based active learning for surrogate-assisted particle swarm optimization of expensive problems[J]. IEEE transactions on cybernetics,2017,47(9):2664-2677.
[7]GUO D,JIN Y,DING J,et al. Heterogeneous ensemble-based infill criterion for evolutionary multiobjective optimization of expensive problems[J]. IEEE transactions on cybernetics,2019,49(3):1012-1025.
[8]JONES D,MATTHIAS S,WELCH W. Efficient global optimization of expensive black-box functions[J]. Journal of global optimization,1998,13(4):455-492.
[9]BÜCHE D,SCHRAUDOLPH N,KOUMOUTSAKOS P. Accelerating evolutionary algorithms with gaussian process fitness function models[J]. IEEE transactions on systems man and cybernetics part C,2005,35(2):183-194.
[10]ZHOU Z,ONG Y S,NAIR P,et al. Combining global and local surrogate models to accelerate evolutionary optimization[J]. IEEE transactions on systems man and cybernetics part C(applications and reviews),2007,37(1):66-76.
[11]CHUGH T,CHAKRABORTI N,SINDHYA K,et al. A data-driven surrogate-assisted evolutionary algorithm applied to a many-objective blast furnace optimization problem[J]. Materials and manufacturing processes,2017,32(10):1172-1178.
[12]WANG H,JIN Y,JANSEN J. Data-driven surrogate-assisted multiobjective evolutionary optimization of a trauma system[J]. IEEE transactions on evolutionary computation,2016,20(6):939-952.
[13]GUO D,CHAI T,DING J,et al. Small data driven evolutionary multi-objective optimization of fused magnesium furnaces[C]//In 2016 IEEE Symposium Series on Computational Intelligence(SSCI),Athens,Greece,2016.
[14]WANG H,JIN Y,SUN C,et al. Offline data-driven evolutionary optimization using selective surrogate ensembles[J]. IEEE transactions on evolutionary computation,2019,23(2):203-216,.
[15]CHENG R,JIN Y. A social learning particle swarm optimization algorithm for scalable optimization[J]. Information Sciences,2015,291:43-60.
相似文献/References:
[1]梁兵涛,倪云峰.基于集成学习的中文命名实体识别方法[J].南京师大学报(自然科学版),2022,45(03):123.[doi:10.3969/j.issn.1001-4616.2022.03.016]
Liang Bingtao,Ni Yunfeng.Chinese Named Entity Recognition Method Based on Ensemble Learning[J].Journal of Nanjing Normal University(Natural Science Edition),2022,45(03):123.[doi:10.3969/j.issn.1001-4616.2022.03.016]
[2]赵宇奔,王鑫宁,李 崇.基于K-XGBoost融合模型的高校学生学情预测研究[J].南京师大学报(自然科学版),2023,46(03):89.[doi:10.3969/j.issn.1001-4616.2023.03.012]
Zhao Yuben,Wang Xingning,Li Chong.Research on Undergraduate Academic Prediction Based on K-XGBoost Fusion Model[J].Journal of Nanjing Normal University(Natural Science Edition),2023,46(03):89.[doi:10.3969/j.issn.1001-4616.2023.03.012]