[1]曾 帆,吴田振,于振朋,等.海洋哺乳动物尿素转运蛋白关键基因——SLC14A2的分子进化[J].南京师大学报(自然科学版),2022,45(03):79-86.[doi:10.3969/j.issn.1001-4616.2022.03.011]
 Zeng Fan,Wu Tianzhen,Yu Zhenpeng,et al.Molecular Evolution of SLC14A2,a Key Gene for Urea Transporters in Marine Mammals[J].Journal of Nanjing Normal University(Natural Science Edition),2022,45(03):79-86.[doi:10.3969/j.issn.1001-4616.2022.03.011]
点击复制

海洋哺乳动物尿素转运蛋白关键基因——SLC14A2的分子进化()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第45卷
期数:
2022年03期
页码:
79-86
栏目:
生物学
出版日期:
2022-09-15

文章信息/Info

Title:
Molecular Evolution of SLC14A2,a Key Gene for Urea Transporters in Marine Mammals
文章编号:
1001-4616(2022)03-0079-08
作者:
曾 帆吴田振于振朋孙林霞郭天慧
(南京师范大学生命科学学院,江苏省生物多样性与生物技术重点实验室,江苏 南京 210023)
Author(s):
Zeng FanWu TianzhenYu ZhenpengSun LinxiaGuo Tianhui
(School of Life Sciences,Nanjing Normal University,Jiangsu Key Laboratory for Biodiversity and Biotechnology,Nanjing 210023,China)
关键词:
海洋哺乳动物渗透调节SLC14A2基因正选择
Keywords:
marine mammalsosmoregulationSLC14A2 genepositive selection
分类号:
Q951+.3
DOI:
10.3969/j.issn.1001-4616.2022.03.011
文献标志码:
A
摘要:
趋同进化是进化生物学中的核心科学问题. 独立起源的海洋哺乳动物不同类群为了适应高渗的海洋环境,产生了趋同的渗透调节适应机制,能够产生高度浓缩的尿液. 本研究选取了编码尿素转运蛋白的SLC14A2基因为候选基因,进化分析发现该基因在海洋哺乳动物中发生了显著的加速进化,鉴定到4个正选择位点(35、463、592、598)至少被两种最大似然法(maximum likelihood,ML)方法检测到,且这些位点位于或临近重要的结构域,表明海洋哺乳动物可能通过增强肾脏对尿素的主动运输功能从而产生高度浓缩的尿液,与先前的生理研究结果一致. 特别重要的是,在海洋哺乳动物不同类群间鉴定了6个平行/趋同进化位点,进一步为海洋哺乳动物产生高度浓缩的尿液以适应海洋环境提供趋同的分子证据. 另外,正选择主要集中在鲸类进化谱系,可能与鲸类完全营水生生活面临更大的渗透调节的压力有关. 本研究通过对SLC14A2基因的进化分析初步揭示了海洋哺乳动物为了适应高渗的海洋环境产生高度浓缩的尿液提供了趋同的分子机制.
Abstract:
Convergence evolution is the core scientific issue in evolutionary biology. In order to adapt to the hyperosmotic marine environment,independent-originated-marine mammals have evolved the convergent osmoregulation mechanism through producing highly concentrated urine. In this study,the SLC14A2 gene encoding urea transporter was used as a candidate gene for evolutionary analysis. The results revealed that this gene has undergone significant accelerated evolution in marine mammals. Four positively selected sites(35,463,592,598) were detected by at least two maximum likelihood(ML)methods,and these sites were located or near important functional domains. It indicates that marine mammals may produce highly concentrated urine from enhancing the active transport of urea by kidneys,which is consistent with what has been found in the previous physiological studies. Especially,the study identified 6 parallel/convergent evolutionary sites among different groups of marine mammals,which has provided convergent evidence of marine mammals producing highly concentrated urine to adapt to the marine environment at the molecular level. In addition,the positive selection is mainly focused on the evolutionary lineage of cetaceans,which may be related to cetaceans faced greater osmotic pressure than other marine mammals because cetaceans have adapted to fully aquatic life. In this study,the evolutionary analysis of the SLC14A2 gene in marine mammals provides a convergent molecular mechanism of marine mammals to produce highly concentrated urine for adapting to the hypertonic marine environment.

参考文献/References:

[1]STORZ J F. Causes of molecular convergence and parallelism in protein evolution[J]. Nature reviews genetics,2016,17(4):239-250.
[2]HU Y,WU Q,MA S,et al. Comparative genomics reveals convergent evolution between the bamboo-eating giant and red pandas[J]. Proceedings of the national academy of sciences,2017,114(5):1081-1086.
[3]黄小富,张泽钧. 大熊猫与小熊猫生态习性的比较:食物、体型大小及系统发育的影响[J]. 四川动物,2008,27(4):212-217.
[4]LI Y,LIU Z,SHI P,et al. The hearing gene Prestin unites echolocating bats and whales[J]. Current biology,2010,20(2):55-56.
[5]KETTEN D R,SIMMONS J A,HUBBARD A E,et al. Dolphin and bat sonar:Convergence,divergence,or parallelism[J]. Journal of the acoustical society of America,2004,115(5):2517-2517.
[6]ZHOU X M,SEIM I,GLADYSHEV V N,et al. Convergent evolution of marine mammals is associated with distinct substitutions in common genes[J]. Scientific reports,2015,5(1):16550-16550.
[7]TIAN R,WANG ZF,NIU X,et al. Evolutionary genetics of hypoxia tolerance in cetaceans during diving[J]. Genome biology and evolution,2016,8(3):827-839.
[8]FOOTE A D,LIU Y,THOMAS G W,et al. Convergent evolution of the genomes of marine mammals[J]. Nature genetics,2015,47(3):272-275.
[9]ZHU K L,ZHOU X M,XU S X,et al. The loss of taste genes in cetaceans[J]. BMC evolutionary biology,2014,14(1):218.
[10]SUN X H,ZHANG Z Z,SUN Y Y,et al. Comparative genomics analyses of alpha-keratins reveal insights into evolutionary adaptation of marine mammals[J]. Frontiers in zoology,2017,14(1):1-8.
[11]陈万青. 海洋哺乳动物[M]. 青岛:青岛海洋大学出版社,1992.
[12]王京真,于学颖,郭爱环,等. 鲸豚类的渗透调节研究进展[J]. 兽类学报,2012,32(2):156-167.
[13]刘仁俊,哈里森 R J. 江豚皮肤的超微结构及其与其它豚类的比较[J]. 水生生物学报,1986,10(1):105-106.
[14]BIRUKAWA N,ANDO H,GOTO M,et al. Plasma and urine levels of electrolytes,urea and steroid hormones involved in osmoregulation of cetaceans[J]. Zoological science,2005,22(11):1245-1257.
[15]ORTIZ R M. Osmoregulation in marine mammals[J]. Journal of experimental biology,2001,204(Pt 11):1831-1844.
[16]XU S X,YANG Y X,ZHOU X M,et al. Adaptive evolution of the osmoregulation-related genes in cetaceans during secondary aquatic adaptation[J]. BMC evolutionary biology,2013,13(1):189-189.
[17]ZHOU X M,GUANG X M,SUN D,et al. Population genomics of finless porpoises reveal an incipient cetacean species adapted to freshwater[J]. Nature communications,2018,9(1):1276.
[18]杨宝学. 尿素通道蛋白的分子生物学和药理学研究[C]//全国生化与分子药理学学术论文集. 山东:全国生化与分子药理学学术会议,2013.
[19]FENTON R A,HOWORTH A,COOPER G J,et al. Molecular characterization of a novel UT-A urea transporter isoform(UT-A5)in testis[J]. American journal of physiology-cell physiology,2000,279(5):1425-1431.
[20]SANDS J M,NONOGUCHI H,KNEPPER M A,et al. Vasopressin effects on urea and H2O transport in inner medullary collecting duct subsegments[J]. American journal of physiology-renal physiology,1987,253(5):823-832.
[21]FRANCO A,POUJOL R,BAURAIN D,et al. Evaluating the usefulness of alignment filtering methods to reduce the impact of errors on evolutionary inferences[J]. BMC evolutionary biology,2019,19(1):21.
[22]RANWEZ V,DOUZERY E J P,CAMBON C,et al. MACSE v2:toolkit for the alignment of coding sequences accounting for frameshifts and stop codons[J]. Molecular biology and evolution,2018,35(10):2582-2584.
[23]TALAVERA G,CASTRESANA J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments[J]. Systematic biology,2007,56(4):564-577.
[24]YANG Z H. PAML4:phylogenetic analysis by maximum likelihood[J]. Molecular biology and evolution,2007,24(8):1586-1591.
[25]YANG Z H,WONG W S,NIELSEN R. Bayes empirical Bayes inference of amino acid sites under positive selection[J]. Molecular biology and evolution,2005,22(4):1107-1118.
[26]POND S L,FROST S D. Datamonkey:rapid detection of selective pressure on individual sites of codon alignments[J]. Bioinformatics,2005,21(10):2531-2533.
[27]ZOU Z T,ZHANG J Z. Are convergent and parallel amino acid substitutions in protein evolution more prevalent than neutral expectations[J]. Molecular biology and evolution,2015,32(8):2085-2096.
[28]SHAYAKUL C,HEDUGER M A. The SLC14 gene family of urea transporters[J]. European journal of physiology,2004,447(5):603-609.
[29]LONG L E,CHESWORTH R,HUANG X,et al. Transmembrane domain Nrg1 mutant mice show altered susceptibility to the neurobehavioural actions of repeated THC exposure in adolescence[J]. The international journal of neuropsychopharmacology,2013,16(1):163-175.
[30]ZHANG Z R,MCDONOUGH S I,MCCARTY N A. Interaction between permeation and gating in a putative pore domain mutant in the cystic fibrosis transmembrane conductance regulator[J]. Biophysical journal,2000,79(1):298-313.

备注/Memo

备注/Memo:
收稿日期:2021-06-21.
基金项目:江苏省种业振兴“揭榜挂帅”项目(JBGS[2021]034)、江苏省农业重大新品种创制项目(PZC201744).
通讯作者:郭天慧,实验师,研究方向:哺乳动物适应性进化. E-mail:guotianhui@njnu.edu.cn
更新日期/Last Update: 2022-09-15