参考文献/References:
[1]ZAIGHAMZAHEER M,JIN H,LEE S,et al. A brief survey on contemporary methods for anomaly detection in videos[C]//Proceedings of International Conference on Information And Communication Technology Convergence. Allahabad,India,2019:472-473.
[2]CHIMAN D,DINESH K. A review of state-of-the-art techniques for abnormal human activity recognition[J]. Engineering applications of artificial intelligence,2019,77:21-45.
[3]SARAH A,GABRIEL P,SILVIO J,et al. Fight detection in video sequences based on multi-stream convolutional neural networks[C]//Proceedings of 32nd SIBGRAPI Conference on Graphics,Patterns and Images. Rio de Janeiro,Brazil,2019:8-15.
[4]ZHU C,WANG Y K,PU D B,et al. Multi-modality video representation for action recognition[J]. Journal on Big Data,2020,2(3):95-104.
[5]XU D M,HAN G G. Application of improved ViBe algorithm in vehicle detection[C]//International Conference on Artificial Intelligence and Pattern Recognition. Beijing,China,2021:199-204.
[6]ILG E,MAYER N,SAIKIA T,et al. FlowNet 2.0:Evolution of optical flow estimation with deep networks[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Hawaii,USA,2017:1647-1655.
[7]BUKALA A,KOZIARSKI M,CYGANEK B,et al. A study on pattern recognition with the histograms of oriented gradients in distorted and noisy images[J]. Journal of universal computer science,2020,26(4):454-478.
[8]SU Z B,LI W,MA Z,et al. An improved U-Net method for the semantic segmentation of remote sensing images[J]. Applied intelligence,2022,52:3276-3288.
[9]徐涛,田崇阳,刘才华. 基于深度学习的人群异常行为检测综述[J]. 计算机科学,2021,48(9):125-134.
[10]PILLAI G,SEN D. Anomaly detection in nonstationary videos using time-recursive differencing network-based prediction[J]. IEEE geoscience and remote sensing letters,2022,19:1-5.
[11]CHANG Y P,TU Z G,XIE W,et al. Video anomaly detection with spatio-temporal dissociation[J]. Pattern recognition,2022,122:2-13.
[12]LI N N,ZHONG J X,SHU X J,et al. Weakly-supervised anomaly detection in video surveillance via graph convolutional label noise cleaning[J]. Neurocomputing,2022,418:154-167.
[13]LUO W X,LIU W,GAO S H. Normal graph:spatial temporal graph convolutional networks based prediction network for skeleton based video anomaly detection[J]. Neurocomputing,2021,444:332-337.
[14]OUYANG Y Q,VICTOR S. Video anomaly detection by estimating likelihood of representations[C]//Proceedings of 25th International Conference on Pattern Recognition. Milan,Italy,2020:8984-8991.
[15]李自强,王正勇,陈洪刚,等. 基于外观和动作特征双预测模型的视频异常行为检测[J]. 计算机应用,2021,41(10):2997-3003.
[16]LI T,CHEN X Y,ZHU F S,et al. Two-stream deep spatial-temporal auto-encoder for surveillance video abnormal event detection[J]. Neurocomputing,2021,439:256-270.
[17]SUN C,JIA Y D,SONG H,et al. Adversarial 3D convolutional auto-encoder for abnormal event detection in videos[J]. IEEE transactions on multimedia,2021,23:3292-3305.
[18]ESQUIVEL E,ZAVALETA Z. An examination on autoencoder designs for anomaly detection in video surveillance[J]. IEEE access,2022,10:6208-6217.
[19]吕浩,易鹏飞,刘瑞,等. 用于视频异常检测的时序多尺度自编码器[J]. 图学学报,2022,43(2):223-229.
[20]CHAUDHARI S,MITHAL V,POLATKAN R,et al. An attentive survey of attention models[J]. ACM transactions on intelligent systems and technology,2021,12(53):1-32.
[21]SNEHASHIAS M,SRIJAN D,FRANCOIS B. DAM:dissimilarity attention module for weakly-supervised video anomaly detection[C]//Proceedings of IEEE International Conference on Advanced Video and Signal Based Surveillance. Washington,USA,2021:1-8.
[22]WANG C X,YAO Y X,YAO H. Video anomaly detection method based on future frame prediction and attention mechanism[C]//Proceedings of IEEE 11th Annual Computing and Communication Workshop and Conference. Online,2021:405-407.
[23]魏思倩,吉根林,许振,等. 利用注意力机制的多示例学习视频异常检测[J/OL]. 沈阳市,小型微型计算机系统,2021.(2021-10-18)[2022-04-05]. http://kns.cnki.net/kcms/detail/21.1106.tp.20211014.1237.002.html.
[24]FENG S T,ZHUO Z S,PAN D R,et al. CcNet:A cross-connected convolutional network for segmenting retinal vessels using multi-scale features[J]. Neurocomputing,2020,392:603-612.
[25]PIGA N,ONYSHCHUK Y,PASQUALE G,et al. ROFT:real-time optical flow-aided 6D object pose and velocity tracking[J]. IEEE robotics and automation letters,2022,7(1):159-166.
[26]CHEN W Y,PODSTRELENY P,CHENG W H,et al. Code generation from a graphical user interface via attention-based encoder-decoder model[J]. Multimedia systems,2022,28:121-130.
[27]ZHANG C X,HU Y H,ZHU X M. Anomaly detection for user behavior in wireless network based on cross entropy[C]//Proceedings of IEEE 12th International Conference on Ubiquitous Intelligence and Computing and IEEE 12th International Conference on Autonomic and Trusted Computing and IEEE 15th International Conference on Scalable Computing and Communications and Its Associated Workshops. Goyang,South Korea,2015:1258-1263.
[28]BERT D,DAVY N,LUC V G. Semantic instance segmentation with a discriminative loss function[EB/OL]. 2017. http://arxiv.org/pdf/1708.02551.
[29]LU C W,SHI J P,JIA J Y. Abnormal event detection at 150 FPS in MATLAB[C]//Proceedings of IEEE International Conference on Computer Vision. Portland,USA,2013:2720-2727.
[30]VIJAY M,LI W X,VIRAL B. Anomaly detection in crowded scenes[C]//Proceedings of Computer Vision & Pattern Recognition. San Francisco,USA,2010:1975-1981.
[31]李欣璐,吉根林,赵斌. 基于卷积自编码器分块学习的视频异常事件检测与定位[J]. 数据采集与处理,2021,36(3):489-497.
[32]YONG S,YONG H. Abnormal event detection in videos using spatiotemporal autoencoder[C]//Proceedings of the International Symposium in Neural Networks. Hokkaido,Japan,2017:189-196.
[33]LUO W X,LIU W,LIAN D Z,et al. Video anomaly detection with sparse coding inspired deep neural networks[J]. IEEE transactions on pattern analysis and machine intelligence,2021,43(3):1070-1084.
[34]RASHMIKE N,DAMMINDA A,DASWIN D,et al. Spatiotemporal anomaly detection using deep learning for real-time video surveillance[J]. IEEE transactions on industrial informatics,2020,16(1):393-402.
[35]XU Z,ZENG X Q,JI G L. Improved anomaly detection in surveillance videos with multiple probabilistic models inference[J]. Intelligent automation and soft computing,2022,31(3):1703-1717.