参考文献/References:
[1]LATORA V,VINCENZO N,GIOVANNI R. Complex networks:principles,methods and applications[M]. Cambridge:Cambridge University Press,2017.
[2]RIOLO M A,NEWMAN M E J. Consistency of community structure in complex networks[J]. Physical review E,2020,101(5):052306.
[3]LESKOVEC J. Large-scale graph representation learning[C]//IEEE International Conference on Big Data. Boston,MA:IEEE,2017:4-4.
[4]胡云,张舒,佘侃侃,等. 基于重叠社区发现的社会网络推荐算法研究[J]. 南京师大学报(自然科学版),2018,41(3):35-41.
[5]黄立威,李彩萍,张海粟,等. 一种基于因子图模型的半监督社区发现方法[J]. 自动化学报,2016,42(10):1520-1531.
[6]陈俊宇,周刚,南煜,等. 一种半监督的局部扩展式重叠社区发现方法[J]. 计算机研究与发展,2016,53(6):1376-1388.
[7]JIN D,ZHANG B B,SONG Y,et al. ModMRF:A modularity-based Markov Random Field method for community detection[J]. Neurocomputing,2020,405:218-228.
[8]NEWMAN M E J,CLAUSET A. Structure and inference in annotated networks[J]. Nature communications,2016,7(1):1-11.
[9]JIN D,WANG X B,LIU M Q,et al. Identification of generalized semantic communities in large social networks[J]. IEEE transactions on network science and engineering,2020,7(4):2966-2979.
[10]WANG X,JIN D,CAO X C,et al. Semantic community identification in large attribute networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Phoenix,AZ:AAAI,2016:265-271.
[11]RUAN Y Y,FUHRY D,PARTHASARATHY S. Efficient community detection in large networks using content and links[C]//Proceedings of the 22nd International Conference on World Wide Web. New York,NY,USA:ACM,2013:1089-1098.
[12]YANG J,MCAULEY J,LESKOVEC J. Community detection in networks with node attributes[C]//IEEE Inter-national Conference on Data Mining. Dallas,TX:IEEE,2013:1151-1156.
[13]HE D X,WANG Y Y,CAO J X,et al. A network embedding-enhanced Bayesian model for generalized community detection in complex networks[J]. Information sciences,2021,575:306-322.
[14]GIRVAN M,NEWMAN M E J. Community structure in social and biological networks[J]. Proceedings of the national academy of sciences,2002,99(12):7821-7826.
[15]YANG L,CAO X C,JIN D,et al. A unified semi-supervised community detection framework using latent space graph regularization[J]. IEEE transactions on cybernetics,2014,45(11):2585-2598.
[16]HE D X,WANG H C,JIN D,et al. A model framework for the enhancement of community detection in complex networks[J]. Physica A:statistical mechanics and its applications,2016,461:602-612.
[17]HOFMANN T. Probabilistic latent semantic indexing[C]//Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York,NY:ACM,1999:50-57.
[18]CAO J X,WANG H C,JIN D,et al. Combination of links and node contents for community discovery using a graph regularization approach[J]. Future generation computer systems,2019,91:361-370.
[19]ALLAHVERDYAN A E,VER STEEG G,GALSTYAN A. Community detection with and without prior information[J]. Europhysics letters,2010,90(1):18002.
[20]MA X K,GAO L,YONG X R,et al. Semi-supervised clustering algorithm for community structure detection in complex networks[J]. Physica A:statistical mechanics and its applications,2010,389(1):187-197.
[21]XU X W,YURUK N,FENG Z,et al. Scan:a structural clustering algorithm for networks[C]//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose,CA:ACM,2007:824-833.
[22]CHOI S. Algorithms for orthogonal nonnegative matrix factorization[C]//2008 IEEE International Joint Conference on Neural Networks(IEEE World Congress on Computational Intelligence). Hongkong,China:IEEE,2008:1828-1832.
[23]LIU H F,WU Z H,LI X L,et al. Constrained nonnegative matrix factorization for image representation[J]. IEEE transactions on pattern analysis and machine intelligence,2011,34(7):1299-1311.
[24]YEUNG K Y,RUZZO W L. An empirical study on principal component analysis for clustering gene expression data[J]. Bioinformatics,2001,17(9):763-774.
[25]LANCICHINETTI A,FORTUNATO S. Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities[J]. Physical review E,2009,80(1):016118.
[26]CAO J X,JIN D,DANG J W. Autoencoder based community detection with adaptive integration of network topology and node contents[C]//International Conference on Knowledge Engineering and Management. Changchun,China:Springer,2018:184-196.
[27]SEN P,NAMATA G,BILGIC M,et al. Collective classification in network data[J]. AI magazine,2008,29(3):93-106.