参考文献/References:
[1]王汝言,陶中原,赵容剑,等. 多交互图卷积网络用于方面情感分析[J/OL]. 电子与信息学报,2021,43(0):1-8.
[2]ZHANG S X,WEI Z L,WANG Y,et al. Sentiment analysis of Chinese micro-blog text based on extended sentiment dictionary[J]. Future generation computer systems,2018,81:395-403.
[3]FANG Y,TAN H,ZHANG J. Multi-strategy sentiment analysis of consumer reviews based on semantic fuzziness[J]. IEEE access,2018,6:20625-20631.
[4]XU Z,ZHANG S,CHOO K K R,et al. Hierarchy-cutting model based association semantic for analyzing domain topic on the web[J]. IEEE transactions on industrial informatics,2017,13(4):1941-1950.
[5]ZHANG B,XU X,YANG M,et al. Cross-domain sentiment classification by capsule network with semantic rules[J]. IEEE access,2018,6:58284-58294.
[6]MIRTALAIE M A,HUSSAIN O K,CHANG E,et al. Extracting sentiment knowledge from pros/cons product reviews:Discovering features along with the polarity strength of their associated opinions[J]. Expert systems with applications,2018,114:267-288.
[7]陈铁明,缪茹一,王小号. 融合显性和隐性特征的中文微博情感分析[J]. 中文信息学报,2016,30(4):184-192.
[8]ARAQUE O,CORCUERA-PLATAS I,SÁNCHEZ-RADA J F,et al. Enhancing deep learning sentiment analysis with ensemble techniques in social applications[J]. Expert systems with applications,2017,77:236-246.
[9]谢丽星,周明,孙茂松. 基于层次结构的多策略中文微博情感分析和特征抽取[J]. 中文信息学报,2012,26(1):73-83.
[10]李淑芝,余乐陶,邓小鸿.融合深度情感分析和评分矩阵的推荐模型[J]. 电子与信息学报,44(1):245-253.
[11]车思琪,李学沛. 评价系统视阈下中美企业致股东信情感话语对比分析——基于情感词典和机器学习的文本挖掘技术[J]. 外国语(上海外国语大学学报),2021,44(2):50-59.
[12]景丽,李曼曼,何婷婷. 结合扩充词典与自监督学习的网络评论情感分类[J]. 计算机科学,2020,47(11A):78-82,91.
[13]DA'U A,SALIM N,RABIU I,et al. Recommendation system exploiting aspect-based opinion mining with deep learning method[J]. Information sciences,2020,512:1279-1292.
[14]LIAO S,WANG J,YU R,et al. CNN for situations understanding based on sentiment analysis of twitter data[J]. Procedia computer science,2017,111:376-381.
[15]陈飞玥,朱玉莲,陈晓红. 多层特征融合的PCANet及其在人脸识别中的应用[J]. 南京师大学报(自然科学版),2021,166(44):127-133.
[16]金志刚,胡博宏,张瑞. 基于深度学习的多维特征微博情感分析[J]. 中南大学学报(自然科学版),2018,49(5):1135-1140.
[17]CHEN T,XU R,HE Y,et al. Improving sentiment analysis via sentence type classification using BiLSTM-CRF and CNN[J]. Expert systems with applications,2017,72:221-230.
[18]GAO Z,WANG L,ZHOU L,et al. HEp-2 cell image classification with deep convolutional neural networks[J]. IEEE journal of biomedical and health informatics,2016,21(2):416-428.
[19]HUANG B X,CARLEY K. Parameterized convolutional neural networks for aspect level sentiment classification[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. New York,NY:ACM,2018:1091-1096.
[20]FAN C,GAO Q,DU J,et al. Convolution-based memory network for aspect-based sentiment analysis[C]//The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. New York,NY:ACM,2018:1161-1164.
[21]QIN Q,HU W,LIU B. Feature projection for improved text classification[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg,PA:ACL,2020:8161-8171.
[22]CONNEAU A,SCHWENK H,BARRAULT L,et al. Very Deep Convolutional Networks for Text Classification[C]//Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics. Stroudsburg,PA:ACL,2017,1:1107-1116.
[23]GANIN Y,LEMPITSKY V. Unsupervised domain adaptation by backpropagation[C]//International Conference on Machine Learning. PMLR,2015,37:1180-1189.
[24]张柯文,李翔,严云洋,等. 基于多特征双向门控神经网络的领域专家实体抽取方法[J]. 南京师大学报(自然科学版),2021,165(44):128-135.