[1]杨东方,李孟雨,王天放,等.数据驱动的扭曲均值-半方差投资组合选择[J].南京师大学报(自然科学版),2023,46(02):7-14.[doi:10.3969/j.issn.1001-4616.2023.02.002]
 Yang Dongfang,Li Mengyu,Wang Tianfang,et al.Mean-Semivariance Portfolio Selection with Distortion Based on a Data Driven Approach[J].Journal of Nanjing Normal University(Natural Science Edition),2023,46(02):7-14.[doi:10.3969/j.issn.1001-4616.2023.02.002]
点击复制

数据驱动的扭曲均值-半方差投资组合选择()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第46卷
期数:
2023年02期
页码:
7-14
栏目:
数学
出版日期:
2023-06-15

文章信息/Info

Title:
Mean-Semivariance Portfolio Selection with Distortion Based on a Data Driven Approach
文章编号:
1001-4616(2023)02-0007-08
作者:
杨东方李孟雨王天放米 辉刘国祥
(南京师范大学数学科学学院,江苏 南京 210023)
Author(s):
Yang DongfangLi MengyuWang TianfangMi HuiLiu Guoxiang
(School of Mathematical Sciences,Nanjing Normal University,Nanjing 210023,China)
关键词:
带概率扭曲的均值-半方差投资组合优化ICA-GA 混合算法数据驱动方法
Keywords:
mean-semivariance with probability distortion portfolio optimization ICA-GA hybrid algorithm data driven approach
分类号:
O211; F830
DOI:
10.3969/j.issn.1001-4616.2023.02.002
文献标志码:
A
摘要:
运用样本平均近似的数据驱动方法研究了带概率扭曲的均值-半方差投资组合优化模型,结合经典的遗传算法(ICA)和帝国竞争算法(GA),提出了 ICA-GA 混合算法. 利用真实市场数据,对模型进行实证分析并求解有效前沿. 最后,通过比较算法程序运行时间,表明本文创新的 ICA-GA 混合算法融合了帝国竞争算法和遗传算法两者的优势,比它们有更好的表现.
Abstract:
This paper studies a mean-semivariance portfolio optimization problem with probability distortion by using the data driven sample average approximation(SAA)approach. The paper builds ICA-GA hybrid algorithm based on the traditional imperial competitive algorithm(ICA)and genetic algorithm(GA). Employing the true market data, the model is empirically analyzed and the effective frontier is solved. Finally, by comparing the running time of the computer programs, it shows that the ICA-GA hybrid algorithm in this paper combines the advantages of imperial competitive algorithm and genetic algorithm, and it performs better than them.

参考文献/References:

[1]MARKOWITZ H. Portfolio selection[J]. Journal of finance,1952,7(1):77-91.
[2]ZHOU X Y,LI D. Continuous-time mean-variance portfolio selection:a stochastic LQ framework[J]. Applied mathematics & optimization,2000,42:19-33.
[3]LIOUI A,PONCET P. Understanding dynamic mean variance asset allocation[J]. European journal of operational research,2016,254(1):320-337.
[4]RAY P,JENAMANI M. Mean-variance analysis of sourcing decision under disruption risk[J]. European journal of operational research,2016,250(2):679-689.
[5]MARKOWITZ H,TODD P,XU G,et al. Computation of mean-semivariance efficient sets by the critical line algorithm[J]. Annals of operations research,1993,45(1):307-317.
[6]BALLESTERO E. Mean-semivariance efficient frontier:a downside risk model for portfolio selection[J]. Applied mathematical finance,2005,12(1):1-15.
[7]ESTRADA J. Mean-semivariance behavior:downside risk and capital asset pricing. [J]. International review of economics & finance,2007,16(2):169-185.
[8]QUIGGIN J. A theory of anticipated utility[J]. Journal of economic behavior and organization,1982,3(4):323-343.
[9]JIN H,ZHOU X Y. Behavioral portfolio selection in continuous time[J]. Mathematical finance,2008,18(3):385-426.
[10]HE X D,ZHOU X Y. Portfolio choice via quantiles[J]. Mathematical finance,2011,21(2):203-231.
[11]BI J,JIN H,MENG Q. Behavioral mean-variance portfolio selection[J]. European journal of operational research,2018,271(2):644-663.
[12]BI J,ZHONG Y,ZHOU X Y. Mean-semivariance portfolio selection under probability distortion[J]. Stochastics,2013,85(4):604-619.
[13]KANG Z,LI X,LI Z,et al. Data-driven robust mean-CVaR portfolio selection under distribution ambiguity[J]. Quantitative finance,2019,19(1):105-121.
[14]BAN G Y,EL KAROUI N,LIM A E. Machine learning and portfolio optimization[J]. Management science,2016,64(3):1136-1154.
[15]BERTSIMAS D,GUPTA V,KALLUS N. Robust sample average approximation[J]. Mathematical programming,2018,171(1/2):217-282.
[16]DELAGE E,YE Y. Distributionally robust optimization under moment uncertainty with application to data-driven problems[J]. Operations research,2010,58(3):595-612.
[17]CETINKAYA E,THIELE A. Data-driven portfolio management with quantile constraints[J]. OR spectrum,2015,37(3):761-786.
[18]PRELEC D. The probability weighting function[J]. Econometrica,1998,66(3):497-527.
[19]SHAPIRO A,DENTCHEVA D,RUSZCZYNSKI A. Lectures on Stochastic Programming:modeling and theory[M]. Cambridge:Cambridge University Press,2009.
[20]KLEYWEGT A J,SHAPIRO A,HOMEM-DE-MELLO T. The sample average approximation method for stochastic discrete optimization[J]. SIAM journal on optimization,2001,12(2):479-502.
[21]MEHDINEJAD M,MOHAMMADI-IVATLOO B,DADASHZADEH-BONAB R,et al. Solution of optimal reactive power dispatch of power systems using hybrid particle swarm optimization and imperialist competitive algorithms[J]. International journal of electrical power and energy systems,2016,83:104-116.
[22]HOSSEINI S,AL KHALED A. A survey on the imperialist competitive algorithm metaheuristic:implementation in engineering domain and directions for future research[J]. Applied soft computing,2014,24:1078-1094.
[23]SADEGHI J,MOUSAVI S M,NIAKI S T A. Optimizing an inventory model with fuzzy demand,backordering,and discount using a hybrid imperialist competitive algorithm[J]. Applied mathematical modelling,2016,40(15/16):7318-7335.

备注/Memo

备注/Memo:
收稿日期:2023-04-27.
基金项目:国家自然科学基金项目(61304065).
通讯作者:米辉,博士,副教授,研究方向:金融数学. E-mail:mihui@njnu.edu.cn
更新日期/Last Update: 2023-06-15