参考文献/References:
[1]MARKOWITZ H. Portfolio selection[J]. Journal of finance,1952,7(1):77-91.
[2]ZHOU X Y,LI D. Continuous-time mean-variance portfolio selection:a stochastic LQ framework[J]. Applied mathematics & optimization,2000,42:19-33.
[3]LIOUI A,PONCET P. Understanding dynamic mean variance asset allocation[J]. European journal of operational research,2016,254(1):320-337.
[4]RAY P,JENAMANI M. Mean-variance analysis of sourcing decision under disruption risk[J]. European journal of operational research,2016,250(2):679-689.
[5]MARKOWITZ H,TODD P,XU G,et al. Computation of mean-semivariance efficient sets by the critical line algorithm[J]. Annals of operations research,1993,45(1):307-317.
[6]BALLESTERO E. Mean-semivariance efficient frontier:a downside risk model for portfolio selection[J]. Applied mathematical finance,2005,12(1):1-15.
[7]ESTRADA J. Mean-semivariance behavior:downside risk and capital asset pricing. [J]. International review of economics & finance,2007,16(2):169-185.
[8]QUIGGIN J. A theory of anticipated utility[J]. Journal of economic behavior and organization,1982,3(4):323-343.
[9]JIN H,ZHOU X Y. Behavioral portfolio selection in continuous time[J]. Mathematical finance,2008,18(3):385-426.
[10]HE X D,ZHOU X Y. Portfolio choice via quantiles[J]. Mathematical finance,2011,21(2):203-231.
[11]BI J,JIN H,MENG Q. Behavioral mean-variance portfolio selection[J]. European journal of operational research,2018,271(2):644-663.
[12]BI J,ZHONG Y,ZHOU X Y. Mean-semivariance portfolio selection under probability distortion[J]. Stochastics,2013,85(4):604-619.
[13]KANG Z,LI X,LI Z,et al. Data-driven robust mean-CVaR portfolio selection under distribution ambiguity[J]. Quantitative finance,2019,19(1):105-121.
[14]BAN G Y,EL KAROUI N,LIM A E. Machine learning and portfolio optimization[J]. Management science,2016,64(3):1136-1154.
[15]BERTSIMAS D,GUPTA V,KALLUS N. Robust sample average approximation[J]. Mathematical programming,2018,171(1/2):217-282.
[16]DELAGE E,YE Y. Distributionally robust optimization under moment uncertainty with application to data-driven problems[J]. Operations research,2010,58(3):595-612.
[17]CETINKAYA E,THIELE A. Data-driven portfolio management with quantile constraints[J]. OR spectrum,2015,37(3):761-786.
[18]PRELEC D. The probability weighting function[J]. Econometrica,1998,66(3):497-527.
[19]SHAPIRO A,DENTCHEVA D,RUSZCZYNSKI A. Lectures on Stochastic Programming:modeling and theory[M]. Cambridge:Cambridge University Press,2009.
[20]KLEYWEGT A J,SHAPIRO A,HOMEM-DE-MELLO T. The sample average approximation method for stochastic discrete optimization[J]. SIAM journal on optimization,2001,12(2):479-502.
[21]MEHDINEJAD M,MOHAMMADI-IVATLOO B,DADASHZADEH-BONAB R,et al. Solution of optimal reactive power dispatch of power systems using hybrid particle swarm optimization and imperialist competitive algorithms[J]. International journal of electrical power and energy systems,2016,83:104-116.
[22]HOSSEINI S,AL KHALED A. A survey on the imperialist competitive algorithm metaheuristic:implementation in engineering domain and directions for future research[J]. Applied soft computing,2014,24:1078-1094.
[23]SADEGHI J,MOUSAVI S M,NIAKI S T A. Optimizing an inventory model with fuzzy demand,backordering,and discount using a hybrid imperialist competitive algorithm[J]. Applied mathematical modelling,2016,40(15/16):7318-7335.