[1]班楷第,孙 宇,韩悦,等.乳腺癌超声图像的腋窝淋巴结特征指导分割网络[J].南京师大学报(自然科学版),2023,46(02):92-98.[doi:10.3969/j.issn.1001-4616.2023.02.012]
 Ban Kaidi,Sun Yu,Han Yue,et al.Features Guidance Axillary Lymph Nodes Network for Breast Cancer Segmentation[J].Journal of Nanjing Normal University(Natural Science Edition),2023,46(02):92-98.[doi:10.3969/j.issn.1001-4616.2023.02.012]
点击复制

乳腺癌超声图像的腋窝淋巴结特征指导分割网络()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第46卷
期数:
2023年02期
页码:
92-98
栏目:
计算机科学与技术
出版日期:
2023-06-15

文章信息/Info

Title:
Features Guidance Axillary Lymph Nodes Network for Breast Cancer Segmentation
文章编号:
1001-4616(2023)02-0092-07
作者:
班楷第123孙 宇23韩悦23魏本征23
(1.山东中医药大学中医药创新研究院,山东 济南 250355)
(2.山东中医药大学医学人工智能研究中心,山东 青岛 266112)
(3.山东中医药大学青岛中医药科学院,山东 青岛 266112)
Author(s):
Ban Kaidi123Sun Yu23Han Yue23Wei Benzheng23
(1.College of Innovative Institute of Chinese Medicine and Pharmacy,Shandong University of Traditional Chinese Medicine,Jinan 250355,China)
(2.Center for Medical Artificial Intelligence,Shandong University of Traditional Chinese Medicine,Qingdao 266112,China)
(3.Qingdao Academy of Chinese Medical Sciences,Shandong University of Traditional Chinese Medicine,Qingdao 266112,China)
关键词:
腋窝淋巴结图像分割深度学习超声图像分割网络
Keywords:
Axillary lymph nodes image segmentation deep learning ultrasonic images segmentation network
分类号:
TP391
DOI:
10.3969/j.issn.1001-4616.2023.02.012
文献标志码:
A
摘要:
腋窝淋巴结超声图像分割是一项具有临床价值且存在挑战性的任务,对乳腺癌的诊断具有重要意义. 为提升腋窝淋巴结临床分割精度,针对腋窝淋巴结超声图像特点,本文在编码器—解码器架构基础上,设计特征指导模块,实现特征提取中的特征高效融合和系数探索,并在此基础上提出腋窝淋巴结特征指导分割网络,实现超声图像中腋窝淋巴结的精准识别与分割. 实验表明,本文算法在712张腋窝淋巴结超声图像数据集上的m-ACC为0.977,m-IoU为0.878,m-Dice为0.932,优于现有分割模型,分割结果可作为临床诊断参考,辅助乳腺癌腋窝淋巴结转移的精准诊断.
Abstract:
Ultrasound image segmentation of axillary lymph nodes is a clinically valuable and challenging task, which is of great significance for the diagnosis of breast cancer. In order to improve the clinical segmentation accuracy of axillary lymph nodes, Aiming at the characteristics of axillary lymph nodes ultrasonic images, on the encoder decoder architecture, this paper designs a feature guidance module to achieve efficient feature fusion and coefficient exploration in feature extraction, and on this basis, the features guidance network of axillary lymph nodes is proposed to achieve accurate identification and segmentation of axillary lymph nodes in ultrasound images. Experiments show that on the dataset of 712 axillary lymph node ultrasound images, the m-ACC of this algorithm is 0.977, the m-IoU score is 0.878, and the m-Dice can reach 0.932, which is better than the existing segmentation model, and the segmentation results can be used as a clinical diagnosis reference to assist in the accurate diagnosis of axillary lymph node metastasis in breast cancer.

参考文献/References:

[1]WILD C P,WEIDERPASS E,STEWART B W. World Cancer Report:cancer research for Cancer Prevention[M]. Lyon:International Agency for Research on Cancer,2020.
[2]EIGHAZALY H,ANDERSON,ABDFLAZIZ H,et al. The first BGICC consensus and recommendations for breast awareness,early detection and risk reduction in low- and middle-income countries and the MENA region[J]. International journal of cancer,2021,149(3):505-513.
[3]王丽君,罗冉,陈艳虹,等. 影像学在乳腺癌新辅助治疗疗效评估中的优势与限度[J]. 中华放射学杂志,2022,56(1):113-116.
[4]谢亚咩,王欢. 影像新技术在乳腺疾病筛查中的应用[J]. 临床医学进展,2022,12(1):6.
[5]GARCIA T A,FERNANDEZ G S,ORTEGA R,et al. Can we avoid axillary lymph node dissection in N2 breast cancer patients with chemo-sensitive tumours such as HER2 and TNBC?[J]. Breast cancer research and treatment,2021,185(2):1-10.
[6]付慧,穆为民,吕艳丽,等. 超声诊断乳腺癌腋窝淋巴结转移状态的临床应用价值[J]. 山西医药杂志,2019,48(3):263-266.
[7]LIU C,CHEN S,YANG Y,et al. The value of the computer-aided diagnosis system for thyroid lesions based on computed tomography images[J]. Quantitative imaging in medicine and surgery,2019,9(4):642.
[8]VALDORA F,HOUSSAMI N,ROSSI F,et al. Rapid review:radiomics and breast cancer[J]. Breast cancer research & treatment,2018,169(2):217-229.
[9]DRUKKER K,GIGER M,MEINEL L A,et al. Quantitative ultrasound image analysis of axillary lymph node status in breast cancer patients[J]. International journal of computer assisted radiology & surgery,2013,8(6):895-903.
[10]金华,罗伟权,纪宗萍,等. 乳腺癌超声影像组学图像特征Logistic回归方程预测腋窝淋巴结转移风险[J]. 中国超声医学杂志,2021,37(2):139-142.
[11]马明明,崔应谱,刘想,等. 基于乳腺X线摄影的影像组学对乳腺肿块和钙化良恶性分类的研究[J]. 放射学实践,2022,37(3):325-330.
[12]SUN Q,LIN X,ZHAO Y,et al. Deep learning vs. radiomics for predicting axillary lymph node metastasis of breast cancer using ultrasound images:don't forget the peritumoral region[J]. Frontiers in oncology,2020,10:53.
[13]HUANG G,LIU Z,MAATEN V D,et al. Densely connected convolutional networks[C]//Proceedings of the 30th IEEE conference on computer vision and pattern recognition. Honolulu,Hawaii:IEEE,2017.
[14]RONNEBERGER O,FISCHER P,BROX T. U-net:convolutional networks for biomedical image segmentation[C]//International conference on medical image computing and computer-assisted intervention. Munich Germany:Springer,2015.
[15]OKTAY O,SCHLEMPER J,FOLGOC L L,et al. Attention U-net:learning where to look for the pancreas[C]//International conference on medical imaging with deep learning. New York:PMLR,2018.
[16]GU Z W,CHENG J,FU H Z,et al. CE-Net:context encoder network for 2D medical image segmentation[J]. IEEE transactions on medical imaging,2019,38(10):2281-2292.
[17]ZHOU L Q,WU X L,HUANG S Y,et al. Lymph node metastasis prediction from primary breast cancer US images using deep learning[J]. Radiology,2020,294(1):19-28.
[18]ZHENG X,YAO Z,HUANG Y,et al. Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer[J]. Nature communications,2020,11(1):1-9.
[19]ZHANG Y,YING M T C,YANG L,et al. Coarse-to-fine stacked fully convolutional nets for lymph node segmentation in ultrasound images[C]//IEEE international conference on bioinformatics and biomedicine(BIBM). Shenzhen,China:IEEE,2016.
[20]SHELHAMER E,LONG J,DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE transactions on pattern analysis and machine intelligence,2016,39(4):640-651.
[21]LIN Y,ZHANG Y Z,CHEN J X,et al. Suggestive annotation:A deep active learning framework for biomedical image segmentation[C]//International conference on medical image computing and computer-assisted intervention. Quebec City,Canada:Springer,2017.
[22]BADRINARAYANAN V,KENDALL A,CIPOLLA R. SegNet:a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE transactions on pattern analysis and machine intelligence,2017,39(12):2481-2495.
[23]ZHAO H S,SHI J P,QI X J,et al. Pyramid scene parsing network[C]//2017 IEEE conference on computer vision and pattern recognition(CVPR). Honolulu:IEEE,2017.
[24]CHEN L C,ZHU Y,PAPANDREOU G,et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European conference on computer vision(ECCV). Munich,Germany:Springer,2018.

相似文献/References:

[1]康家银,张文娟.用于图像分割的非局部空间约束的核FCM算法[J].南京师大学报(自然科学版),2019,42(03):122.[doi:10.3969/j.issn.1001-4616.2019.03.016]
 Kang Jiayin,Zhang Wenjuan.Kernelized FCM Algorithm with Non-Local SpatialConstraint for Image Segmentation[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(02):122.[doi:10.3969/j.issn.1001-4616.2019.03.016]
[2]韩 悦,张永寿,郭依廷,等.乳腺癌腋窝淋巴结超声图像分割算法研究[J].南京师大学报(自然科学版),2021,44(04):122.[doi:10.3969/j.issn.1001-4616.2021.04.016]
 Han Yue,Zhang Yongshou,Guo Yiting,et al.Research on Ultrasound Image Segmentation Algorithm forAxillary Lymph Node with Breast Cancer[J].Journal of Nanjing Normal University(Natural Science Edition),2021,44(02):122.[doi:10.3969/j.issn.1001-4616.2021.04.016]
[3]李锦峰,裴 伟,朱永英,等.基于主题色板的图像上色方法研究[J].南京师大学报(自然科学版),2022,45(03):116.[doi:10.3969/j.issn.1001-4616.2022.03.015]
 Li Jinfeng,Pei Wei,Zhu Yongying,et al.Research on Image Coloring Method Based on Theme Palette[J].Journal of Nanjing Normal University(Natural Science Edition),2022,45(02):116.[doi:10.3969/j.issn.1001-4616.2022.03.015]

备注/Memo

备注/Memo:
收稿日期:2022-09-20.
基金项目:国家自然科学基金项目(61872225)、山东省自然科学基金项目(ZR2020KF013、ZR2020ZD44、ZR2019ZD04、ZR2020QF043)、山东省高校青创引才育才计划项目(2019-173)、齐鲁卫生与健康领军人才培育工程项目.
通讯作者:魏本征,博士,教授,博士生导师,研究方向:医学人工智能,机器学习等. E-mail:wbz99@sina.com
更新日期/Last Update: 2023-06-15