[1]周湘贞,李 帅,隋 栋.基于深度学习和注意力机制的微博情感分析[J].南京师大学报(自然科学版),2023,46(02):115-121.[doi:10.3969/j.issn.1001-4616.2023.02.015]
 Zhou Xiangzhen,Li Shuai,Sui Dong.Microblog Emotion Analysis Based on Deep Learning and Attention Mechanism[J].Journal of Nanjing Normal University(Natural Science Edition),2023,46(02):115-121.[doi:10.3969/j.issn.1001-4616.2023.02.015]
点击复制

基于深度学习和注意力机制的微博情感分析()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第46卷
期数:
2023年02期
页码:
115-121
栏目:
计算机科学与技术
出版日期:
2023-06-15

文章信息/Info

Title:
Microblog Emotion Analysis Based on Deep Learning and Attention Mechanism
文章编号:
1001-4616(2023)02-0115-07
作者:
周湘贞12李 帅2隋 栋3
(1.郑州升达经贸管理学院信息工程学院,河南 郑州 451191)
(2.北京航空航天大学计算机学院,北京 100191)
(3.北京建筑大学电气与信息工程学院,北京 102406)
Author(s):
Zhou Xiangzhen12Li Shuai2Sui Dong3
(1.School of Information Engineering,Zhengzhou Shengda College of Economics and Trade Management,Zhengzhou 451191,China)
(2.School of Computer Science,Beijing University of Aeronautics and Astronautics,Beijing 100191,China)
(3.School of Electrical and Information Engineering,Beijing University of Civil Engineering and Architecture,Beijing 102406,China)
关键词:
微博情感深度学习循环神经网络注意力机制
Keywords:
microblog emotion deep learning recurrent neural network attention mechanism
分类号:
TP312; G254
DOI:
10.3969/j.issn.1001-4616.2023.02.015
文献标志码:
A
摘要:
为了提高微博情感分析的性能,采用深度学习算法中的循环神经网络用于情感分类,并采用注意力机制对词特征进行选择加权,以增强循环神经网络的分类的准确率. 首先,将微博语料进行去噪、分词、向量化等处理,形成微博初始样本. 然后,构建循环神经网络的微博分类模型,通过隐藏层节点循环,并结合历史时刻及当前时刻隐藏层输出获得词特征向量. 接着,注意力机制用于词特征相似计算及选择加权构建句子特征,并采用Softmax函数获得分类结果. 最后,通过微博情感分类仿真测试验证了所提方法的可靠性. 实验结果表明,相比常用微博情感分类算法,通过合理设置注意力机制窗口大小,所提方法在不同词向量规模样本下均表现出更高的分类性能.
Abstract:
In order to improve the performance of Weibo's sentiment analysis, the recurrent neural network in the deep learning algorithm is used for sentiment classification, and the attention mechanism is used to select and weight the word features, so as to enhance the classification accuracy of the recurrent neural network. First, the Weibo corpus is denoised, segmented and vectorized to form an initial sample of Weibo. Then, the Weibo classification model of recurrent neural network is constructed, and the word feature vector is obtained through the node circulation of hidden layer and the output of hidden layer at historical moment and current moment. Then, the attention mechanism is used to calculate the similarity of word features and select weights to construct sentence features, and the classification results are obtained by Softmax function. Finally, the reliability of the proposed method is verified by the Weibo emotion classification simulation test. Experimental results show that, compared with the commonly used Weibo emotion classification algorithm, the proposed method shows higher classification performance under different word vector size samples by setting the attention mechanism window size reasonably.

参考文献/References:

[1]马晓慧,马尚才,闫俊伢,等. 基于距离感知的目标情感分类模型[J]. 南京师大学报(自然科学版),2021,44(4):111-116.
[2]段吉东,刘双荣,马坤,等. 基于集成学习的文本情感分类方法[J]. 济南大学学报(自然科学版),2019,33(6):483-488.
[3]朱亚军,次曲,拥措. 基于SVM算法的藏文微博情感分析研究[J]. 计算机仿真,2022,39(8):226-229.
[4]冯媛媛,刘克剑,李伟豪. 基于BiLSTM+Self-Attention的多性格微博情感分类[J]. 西华大学学报(自然科学版),2022,41(1):67-76.
[5]NIU Z,ZHONG G,YU H. A review on the attention mechanism of deep learning[J]. Neurocomputing,2021,452:48-62.
[6]GUO M H,XU T X,LIU J J,et al. Attention mechanisms in computer vision:a survey[J]. Computational visual media,2022,8(3):331-368.
[7]张旭辉,张郴,李雅南,等. 城市旅游餐饮体验的注意力机制模型建构——基于机器学习的网络文本深度挖掘[J]. 南京师大学报(自然科学版),2022,45(1):32-39.
[8]LI J,JIN K,ZHOU D,et al. Attention mechanism-based CNN for facial expression recognition[J]. Neurocomputing,2020,411:340-350.
[9]WANG Y,WU H,ZHANG J,et al. Predrnn:a recurrent neural network for spatiotemporal predictive learning[J]. IEEE transactions on pattern analysis and machine intelligence,2022,45(2):2208-2225.
[10]HEWAMALAGE H,BERGMEIR C,BANDARA K. Recurrent neural networks for time series forecasting:current status and future directions[J]. International journal of forecasting,2021,37(1):388-427.
[11]YIN B,CORRADI F,BOHTÉ S M. Accurate and efficient time-domain classification with adaptive spiking recurrent neural networks[J]. Nature machine intelligence,2021,3(10):905-913.
[12]KISVARI A,LIN Z,LIU X. Wind power forecasting—a data-driven method along with gated recurrent neural network[J]. Renewable energy,2021,163:1895-1909.
[13]WEI X,ZHANG L,YANG H Q,et al. Machine learning for pore-water pressure time-series prediction:application of recurrent neural networks[J]. Geoscience frontiers,2021,12(1):453-467.
[14]邓君,孙绍丹,王阮,等. 基于Word2Vec和SVM的微博舆情情感演化分析[J]. 情报理论与实践,2020,43(8):112-119.
[15]吴仁彪,乔晗,贾云飞,等. 基于胶囊网络的中长微博情感分析[J]. 信号处理,2022,38(8):1632-1641.
[16]林伟. 基于PSO-LSTM的中文微博情感分类研究[J]. 中国人民公安大学学报(自然科学版),2022,28(1):95-101.

相似文献/References:

[1]郑德鹏,杜吉祥,翟传敏.基于深度学习MPCANet的年龄估计[J].南京师大学报(自然科学版),2017,40(01):20.[doi:10.3969/j.issn.1001-4616.2017.01.004]
 Zheng Depeng,Du Jixiang,Zhai Chuanmin.Age Estimation Based on Deep Learning MPCANet[J].Journal of Nanjing Normal University(Natural Science Edition),2017,40(02):20.[doi:10.3969/j.issn.1001-4616.2017.01.004]
[2]朱 繁,王洪元,张 继.基于深度学习的行人重识别研究综述[J].南京师大学报(自然科学版),2018,41(04):93.[doi:10.3969/j.issn.1001-4616.2018.04.015]
 Zhu Fan,Wang Hongyuan,Zhang Ji.A Survey of Person Re-identification Based on Deep Learning[J].Journal of Nanjing Normal University(Natural Science Edition),2018,41(02):93.[doi:10.3969/j.issn.1001-4616.2018.04.015]
[3]孙茹君,张鲁飞.基于动态指导的深度学习模型稀疏化执行方法[J].南京师大学报(自然科学版),2019,42(03):11.[doi:10.3969/j.issn.1001-4616.2019.03.002]
 Sun Rujun,Zhang Lufei.Dynamic Sparse Method for Deep Learning Execution[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(02):11.[doi:10.3969/j.issn.1001-4616.2019.03.002]
[4]赵文芳,林润生,唐 伟,等.基于深度学习的PM2.5短期预测模型[J].南京师大学报(自然科学版),2019,42(03):32.[doi:10.3969/j.issn.1001-4616.2019.03.005]
 Zhao Wenfang,Lin Runsheng,Tang Wei,et al.Forecasting Model of Short-Term PM2.5 ConcentrationBased on Deep Learning[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(02):32.[doi:10.3969/j.issn.1001-4616.2019.03.005]
[5]张新峰,闫昆鹏,赵 珣.基于双向LSTM的手写文字识别技术研究[J].南京师大学报(自然科学版),2019,42(03):58.[doi:10.3969/j.issn.1001-4616.2019.03.008]
 Zhang Xinfeng,Yan Kunpeng,Zhao Xun.Handwriting Chinese Text Recognition Using BiLSTM Network[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(02):58.[doi:10.3969/j.issn.1001-4616.2019.03.008]
[6]贾玉福,胡胜红,刘文平,等.使用条件生成对抗网络的自然图像增强方法[J].南京师大学报(自然科学版),2019,42(03):88.[doi:10.3969/j.issn.1001-4616.2019.03.012]
 Jia Yufu,Hu Shenghong,Liu Wenping,et al.Wild Image Enhancement with Conditional Generative Adversarial Network[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(02):88.[doi:10.3969/j.issn.1001-4616.2019.03.012]
[7]汤 凯,何 庆,赵 群,等.基于改进的深度残差网络的图像识别[J].南京师大学报(自然科学版),2019,42(03):115.[doi:10.3969/j.issn.1001-4616.2019.03.015]
 Tang Kai,He Qing,Zhao Qun,et al.Image Recognition Based on Improved Deep Neural Network[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(02):115.[doi:10.3969/j.issn.1001-4616.2019.03.015]
[8]汪 晨,张辉辉,乐继旺,等.基于深度学习和遥感影像的松材线虫病疫松树目标检测[J].南京师大学报(自然科学版),2021,44(03):84.[doi:10.3969/j.issn.1001-4616.2021.03.013]
 Wang Chen,Zhang Huihui,Le Jiwang,et al.Object Detection to the Pine Trees Affected by Pine Wilt Diseasein Remote Sensing Images Using Deep Learning[J].Journal of Nanjing Normal University(Natural Science Edition),2021,44(02):84.[doi:10.3969/j.issn.1001-4616.2021.03.013]
[9]韩 悦,张永寿,郭依廷,等.乳腺癌腋窝淋巴结超声图像分割算法研究[J].南京师大学报(自然科学版),2021,44(04):122.[doi:10.3969/j.issn.1001-4616.2021.04.016]
 Han Yue,Zhang Yongshou,Guo Yiting,et al.Research on Ultrasound Image Segmentation Algorithm forAxillary Lymph Node with Breast Cancer[J].Journal of Nanjing Normal University(Natural Science Edition),2021,44(02):122.[doi:10.3969/j.issn.1001-4616.2021.04.016]
[10]闫靖昆,黄毓贤,秦伟森,等.棉田复杂背景下棉花黄萎病病斑分割算法研究[J].南京师大学报(自然科学版),2021,44(04):127.[doi:10.3969/j.issn.1001-4616.2021.04.017]
 Yan Jingkun,Huang Yuxian,Qin Weisen,et al.Study on Segmentation Algorithm of Cotton Verticillium WiltDisease Spot in Cotton Field Under Complex Background[J].Journal of Nanjing Normal University(Natural Science Edition),2021,44(02):127.[doi:10.3969/j.issn.1001-4616.2021.04.017]

备注/Memo

备注/Memo:
收稿日期:2023-01-03.
基金项目:国家自然科学青年基金项目(61702026)、河南省2022年度科技厅科技攻关项目(222102210290)、校级2021应用基础研究与应用专项项目(SD-ZDIAN2021-05).
通讯作者:隋栋,博士后,讲师,研究方向:人工智能与大数据. E-mail:619543699@qq.com
更新日期/Last Update: 2023-06-15