[1]刘晚乔,赵 飚.基于双圈图GA2指标的分析[J].南京师大学报(自然科学版),2023,46(04):5-10,16.[doi:10.3969/j.issn.1001-4616.2023.04.002]
 Liu Wanqiao,Zhao Biao.Based on Bicyclic Graphs Analysis of Second Geometric-Arithmetic Index[J].Journal of Nanjing Normal University(Natural Science Edition),2023,46(04):5-10,16.[doi:10.3969/j.issn.1001-4616.2023.04.002]
点击复制

基于双圈图GA2指标的分析()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第46卷
期数:
2023年04期
页码:
5-10,16
栏目:
数学
出版日期:
2023-12-15

文章信息/Info

Title:
Based on Bicyclic Graphs Analysis of Second Geometric-Arithmetic Index
文章编号:
1001-4616(2023)04-0005-06
作者:
刘晚乔赵 飚
(1.中国国际航空股份有限公司新疆分公司,新疆 乌鲁木齐 830026)
(2.新疆大学数学与系统科学学院,新疆 乌鲁木齐 830046)
Author(s):
Liu WanqiaoZhao Biao
(1.Air China Limited Xinjiang Branch,Urumqi 830046,China)
(2.College of Mathematics and System Sciences,Xinjiang University,Urumqi 830046,China)
关键词:
GA2指标双圈图连通图悬挂边
Keywords:
second geometric-arithmetic index bicyclic graphs connected graphs pendant edges
分类号:
O175
DOI:
10.3969/j.issn.1001-4616.2023.04.002
文献标志码:
A
摘要:
设G是一个具有n个顶点的简单图,则图G的 GA2指标定义为:,其中 n(u)(n(v))表示图G中的点到顶点u(v)的距离小于到顶点v(u)的距离的点数. 在本文中,对3类双圈图进行图形的变换,进而分析确定了具有最小GA2指标的图.
Abstract:
Let G=(V,E)be a simple graph,the second geometric-arithmetic indices defined as ,where n(u)(n(v))of vertices of G lying closer to the vertex u(v)than to the vertex v(u)for the edge uv. In this paper,we transformed three kinds of bicyclic graphs,analyzed and determined the bicyclic graphs with the minimum GA2.

参考文献/References:

[1]TODESCHIHI R C V,NONE. Handbook of molecular descriptors[M]. New York:Wiley-vch Verlag GmbH,2000.
[2]WIENER H. Structural determination of paraffin boiling points[J]. Journal of the American Chemical Society,1947,69:17-20.
[3]HOSOYA H,TOPOLOGICAL I. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons[J]. Bulletin of the Chemical Society of Japan,1971,4:2332-2339.
[4]DAS C,GUTMAN I. Estimating the Szeged index[J]. Applied mathematics letters,2009,16:1680-1684.
[5]LIU B,GUTMAN I. On a conjecture on Randic’ indices[J]. Match communications in mathematical in computer chemistry,2009,62:143-154.
[6]WU B Y D R,MENG J X. Basic properties of total transformation graphs[J]. Journal of mathematical study,2001,34:109-116.
[7]BONDY J A,MURTY U S R. Graph theory with applications[M]. New York:The Macmillan Press,1976.
[8]VUKICˇEVIC’ D,FURTULA B. Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges[J]. Journal of mathematical chemistry,2009,46(4):1369-1376.
[9]YUAN Y,ZHOU B,NENAD T. On geometric-arithmetic index[J]. Journal of mathematical chemistry,2010,47(2):833-841.
[10]LI Y P,WU B Y D R. Total Transformation Graphs G(xyz)[J]. Journal of Xinjiang University(natural science edition),2021(1):1-24.
[11]FATH-TABAR G,FURTULA B,GUTMAN I. A new geometric-arithmetic index[J]. Journal of mathematical chemistry,2010,47:477-486.
[12]TANG Z,HOU Y. Note on the second geometric-arithmetic index[J]. Match communications in mathematical in computer chemistry,2011,65(3):705-712.

备注/Memo

备注/Memo:
收稿日期:2022-04-19.
通讯作者:赵飚,博士,教授,研究方向:图论及其应用. E-mail:zhb_xj@163.com
更新日期/Last Update: 2023-12-15