参考文献/References:
[1]郭创新,刘祝平,冯斌,等. 新型电力系统风险评估研究现状及展望[J]. 高电压技术,2022,48(9):3394-3404.
[2]徐潇源,王晗,严正,等. 能源转型背景下电力系统不确定性及应对方法综述[J]. 电力系统自动化,2021,45(16):2-13.
[3]张东霞,苗新,刘丽平,等. 智能电网大数据技术发展研究[J]. 中国电机工程学报,2015,35(1):2-12.
[4]李鹏,何帅,韩鹏飞,等. 基于长短期记忆的实时电价条件下智能电网短期负荷预测[J]. 电网技术,2018,42(12):4045-4052.
[5]陆继翔,张琪培,杨志宏,等. 基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J]. 电力系统自动化,2019,43(8):131-137.
[6]庞昊,高金峰,杜耀恒. 基于时间卷积网络分位数回归的短期负荷概率密度预测方法[J]. 电网技术,2020,44(4):1343-1350.
[7]蔡舒平,闫静,刘国海,等. 基于Fisher信息和在线SVR的智能电网气象敏感负荷预测动态建模技术[J]. 中国电机工程学报,2020,40(11):3441-3451.
[8]王继东,杜冲. 基于Attention-BiLSTM神经网络和气象数据修正的短期负荷预测模型[J]. 电力自动化设备,2022,42(4):172-177,224.
[9]ZHANG G Q,GUO J F. A novel method for hourly electricity demand forecasting[J]. IEEE transactions on power systems,2020,35(2):1351-1363.
[10]孙辉,杨帆,高正男,等. 考虑特征重要性值波动的MI-BILSTM短期负荷预测[J]. 电力系统自动化,2022,46(8):95-103.
[11]LI C,LI G J,WANG K Y,et al. A multi-energy load forecasting method based on parallel architecture CNN-GRU and transfer learning for data deficient integrated energy systems[J]. Energy,2022,259:124967.
[12]HU Z Y,BAO Y K,XIONG T,et al. Hybrid filter-wrapper feature selection for short-term load forecasting[J]. Engineering applications of artificial intelligence,2014,40:17-27.
[13]WANG Y,GAN D,ZHANG N,et al. Feature selection for probabilistic load forecasting via sparse penalized quantile regression[J]. Modern power system and clean energy,2019,7:1200-1209.
[14]郭玲,徐青山,郑乐. 基于TCN-GRU模型的短期负荷预测方法[J]. 电力工程技术,2021,40(3):66-71.
[15]任建吉,位慧慧,走卓霖,等. 基于CNN-BiLSTM-Attention的超短期电力负荷预测[J]. 电力系统保护与控制,2022,50(8):108-116.
[16]JIANG L J,WANG X L,LI W,et al. Hybrid multitask multi-information fusion deep learning for household short-term load forecasting[J]. IEEE transactions on smart grid,2021,12(6):5362-5372.
[17]AFRASIABI M,MOHAMMADI M,RASTEGAR M,et al,Deep-based conditional probability density function forecasting of residential loads[J]. IEEE transactions on smart grid,2020,11(4):3646-3657.
[18]杨海柱,田馥铭,张鹏,等. 基于CEEMD-FE和AOA-LSSVM的短期电力负荷预测[J]. 电力系统保护与控制,2022,50(13):126-133.
[19]ZHANG C,LI R. A novel closed-loop clustering algorithm for hierarchical load forecasting[J]. IEEE transactions on smart grid,2021,12(1):432-441.
[20]刘亚珲,赵倩. 基于聚类经验模态分解的CNN-LSTM超短期电力负荷预测[J]. 电网技术,2021,45(11):4444-4451.
[21]董新伟,卜智龙,陈鸣慧,等. 基于VMD-LSTMQR的滚动母线负荷区间预测[J]. 电力工程技术,2021,40(6):9-17.
[22]ABEDINIA O,AMJADY N,ZAREIPOUR H. A new feature selection technique for load and price forecast of electrical power systems[J]. IEEE transactions on power systems,2017,32(1):62-74.
[23]李滨,陆明珍. 考虑实时气象耦合作用的地区电网短期负荷预测建模[J]. 电力系统自动化,2020,44(17):60-68.
[24]KO M S,KO L,HUR K. Feedforward error learning deep neural networks for multivariate deterministic power forecasting[J]. IEEE transactions on industrial informatics,2022,18(9):6214-6223.
相似文献/References:
[1]徐海峰,张 雁,刘 江,等.基于变异系数和最大特征树的特征选择方法[J].南京师大学报(自然科学版),2021,44(01):111.[doi:10.3969/j.issn.1001-4616.2021.01.016]
Xu Haifeng,Zhang Yan,Liu Jiang,et al.Feature Selection Method Based on Coefficient ofVariation and Maximum Feature Tree[J].Journal of Nanjing Normal University(Natural Science Edition),2021,44(04):111.[doi:10.3969/j.issn.1001-4616.2021.01.016]
[2]吉珊珊.基于神经网络树和人工蜂群优化的数据聚类[J].南京师大学报(自然科学版),2021,44(01):119.[doi:10.3969/j.issn.1001-4616.2021.01.017]
Ji Shanshan.Neuron Network Tree and Artificial Bee Colony OptimizationBased Data Clustering Algorithm[J].Journal of Nanjing Normal University(Natural Science Edition),2021,44(04):119.[doi:10.3969/j.issn.1001-4616.2021.01.017]
[3]孙 林,施恩惠,司珊珊,等.基于AP聚类和互信息的弱标记特征选择方法[J].南京师大学报(自然科学版),2022,45(03):108.[doi:10.3969/j.issn.1001-4616.2022.03.014]
Sun Lin,Shi Enhui,Si Shanshan,et al.Weak Label Feature Selection Method Based on AP Clustering and Mutual Information[J].Journal of Nanjing Normal University(Natural Science Edition),2022,45(04):108.[doi:10.3969/j.issn.1001-4616.2022.03.014]
[4]穆晓霞,郑李婧.基于F-score和二进制灰狼优化的肿瘤基因选择方法[J].南京师大学报(自然科学版),2024,(01):111.[doi:10.3969/j.issn.1001-4616.2024.01.013]
Mu Xiaoxia,Zheng Lijing.Tumor Gene Selection Based on F-score and Binary Grey Wolf Optimization[J].Journal of Nanjing Normal University(Natural Science Edition),2024,(04):111.[doi:10.3969/j.issn.1001-4616.2024.01.013]