[1]王晓涵,王 锋.一种求解线弹性问题的无闭锁低阶虚拟元方法[J].南京师大学报(自然科学版),2024,(01):1-6.[doi:10.3969/j.issn.1001-4616.2024.01.001]
 Wang Xiaohan,Wang Feng.A Low-Order Locking-Free Virtual Element Method for the Linear Elasticity Problem[J].Journal of Nanjing Normal University(Natural Science Edition),2024,(01):1-6.[doi:10.3969/j.issn.1001-4616.2024.01.001]
点击复制

一种求解线弹性问题的无闭锁低阶虚拟元方法()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
期数:
2024年01期
页码:
1-6
栏目:
数学
出版日期:
2024-03-15

文章信息/Info

Title:
A Low-Order Locking-Free Virtual Element Method for the Linear Elasticity Problem
文章编号:
1001-4616(2024)01-0001-06
作者:
王晓涵王 锋
(南京师范大学数学科学学院,江苏 南京 210023)
Author(s):
Wang XiaohanWang Feng
(School of Mathematical Sciences,Nanjing Normal University,Nanjing 210023,China)
关键词:
线弹性问题低阶虚拟元方法闭锁现象
Keywords:
linear elasticity problemlow-order virtual element methodlocking phenomenon
分类号:
O24
DOI:
10.3969/j.issn.1001-4616.2024.01.001
文献标志码:
A
摘要:
研究了二维区域上线弹性问题的低阶虚拟元方法. 用不连续的分段线性向量值函数增扩低阶协调虚拟元空间来构造离散空间,设计了一种离散方法,证明了能量范数下的误差是最优收敛的,和 Lamé 常数λ无关. 最后给出数值算例验证了理论结果.
Abstract:
In this paper,we propose a low-order virtual element method for the linear elasticity problem in two dimensions. We construct a discrete space by enriching the low order conforming virtual element space with discontinuous piecewise linear vector-valued functions. A corresponding discrete problem is introduced. It is proved that the error estimation is optimal with respect to the energy norm,and the hidden constant is independent of the Lamé constant λ. Finally,some numerical examples are given to verify the theoretical results.

参考文献/References:

[1]BABUSKA I,SZABO B. On the rates of convergence of the finite element method[J]. International journal for numerical methods in engineering,1982,18:323-341.
[2]BRENNER S C,SUNG L Y. Linear finite element methods for planar linear elasticity[J]. Mathematics of computation,1992,59:321-338.
[3]CROUZEIX M,RAVIART P. Conforming and nonconforming finite element methods for solving the stationary Stokes equations I[J]. ESAIM:mathmatical modelling and numerical analysis,1973,7:33-75.
[4]BRENNER S C. Korn's inequalities for piecewise H1 vector fields[J]. Mathematics of computation,2004,73:1067-1087.
[5]HANSBO P,LARSON M G. Discontinuous Galerkin and the Crouzeix-Raviart element:application to elasticity[J]. ESAIM mathematical modelling and numerical analysis,2003,37:63-72.
[6]WIHLER T P. Locking-free DGFEM for elasticity problems in polygons[J]. IMA journal of numerical analysis,2004,24,45-75.
[7]WIHLER T P. Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems[J]. Mathematics of compution,2006,75:1087-1102.
[8]YI S Y,LEE S,ZIKATANOV L. Locking-free Enriched Galerkin Method for linear elasticity[J]. SIAM journal on numerical analysis,2002,60:52-75.
[9]BEIRÃO DA VEIGA L,BREZZI F,CANGIANI A,et al. Basic principles of virtual element methods[J]. Mathematical models and methods in applied sciences,2013,23:199-214.
[10]BEIRÃO DA VEIGA L,BREZZI F,MAREINI L D. Virtual elements for linear elasticity problems[J]. SIAM journal on numerical analysis,2013,51:794-812.
[11]ZHANG B,ZHAO J,YANG Y,et al. The nonconforming virtual element method for elasticity problems[J]. Journal of computational physics,2019,378:394-410.
[12]KWAK DO Y,PARK H. Lowest-order virtual element methods for linear elasticity problems[J]. Computer methods in applied mechanics and engineering,2022,390.
[13]ADAMS R A,FOURNIER J J F. Sobolev spaces[M]. Netherland:Academic Press,2003.
[14]ARNOLD D N,DOUGLAS J,GUPTA C P. A family of higher order mixed finite element methods for plane elasticity[J]. Numerische mathematics,1984,45:1-22.
[15]BRENNER S C,GUAN Q,SUNG L Y. Some estimates for virtual element methods[J]. Computational methods in applied mathematics,2017,17:553-574.

备注/Memo

备注/Memo:
收稿日期:2023-10-27.
基金项目:国家自然科学基金项目(12071227).
通讯作者:王锋,博士,副教授,研究方向:计算数学.E-mail:fwang@njnu.edu.cn
更新日期/Last Update: 2024-03-15