参考文献/References:
[1]刘伟,黄宇成,杜薇,等. 移动边缘计算中资源受限的串行任务卸载策略[J]. 软件学报,2020,31(6):1889-1908.
[2]FAN W,LI S,LIU J,et al. Joint task offloading and resource allocation for accuracy-aware machine-learning-based IIoT applications[J]. IEEE internet of things journal,2022,10(4):3305-3321.
[3]ZHOU T,YUE Y,QIN D,et al. Joint device association,resource allocation,and computation offloading in ultra-dense multidevice and multitask IoT networks[J]. IEEE internet of things journal,2022,9(19):18695-18709.
[4]TRAN T X,POMPILI D. Joint task offloading and resource allocation for multi-server mobile-edge computing networks[J]. IEEE transactions on vehicular technology,2019,68(1):856-868.
[5]DAI P,HU K,WU X,et al. Asynchronous deep reinforcement learning for data-driven task offloading in mec-empowered vehicular networks[C]//2021 IEEE Conference on Computer Communications(INFOCOM). IEEE,Electr Network,2021:1-10.
[6]张永棠. 一种深度强化学习的C-RAN动态资源分配方法[J]. 小型微型计算机系统,2021,42(1):132-136.
[7]邝祝芳,陈清林,李林峰,等. 基于深度强化学习的多用户边缘计算任务卸载调度与资源分配算法[J]. 计算机学报,2022,45(4):812-824.
[8]吴学文,廖婧贤. 云边协同系统中基于博弈论的资源分配与任务卸载方案[J]. 系统仿真学报,2022,34(7):1468-1481.
[9]熊兵,张俊杰,黄思进,等. 多约束边环境下计算卸载与资源分配联合优化[J/OL]. 小型微型计算机系统:1-8[2022-11-17].
[10]XU C,ZHENG G,ZHAO X. Energy-minimization task offloading and resource allocation for mobile edge computing in NOMA heterogeneous networks[J]. IEEE transactions on vehicular technology,2020,69(12):16001-16016.
[11]田贤忠,许婷,朱娟. 一种最小化时延多边缘节点卸载均衡策略研究[J]. 小型微型计算机系统,2022,43(6):1162-1169.
[12]ZHANG W,ZHANG G,MAO S. Joint parallel offloading and load balancing for cooperative-MEC systems with delay constraints[J]. IEEE transactions on vehicular technology,2022,71(4):4249-4263.
[13]YANG B,CAO X,BASSEY J,et al. Computation offloading in multi-access edge computing networks:a multi-task learning approach[J]. IEEE transactions on mobile computing,2021,20(9):2745-2762.
[14]ZHOU J Y,ZHANG X L. Fairness-aware task offloading and resource allocation in cooperative mobile-edge computing[J]. IEEE internet of things journal,2022,9(5):3812-3824.
[15]WANG P,LI K,XIAO B,et al. Multi objective optimization for joint task offloading,power assignment,and resource allocation in mobile edge computing[J]. IEEE internet of things journal,2022,9(14):11737-11748.
[16]LIU H,LI Y,WANG S. Request scheduling combined with load balancing in mobile-edge computing[J]. IEEE internet of things journal,2022,9(21):20841-20852.
[17]CAI J,FU H,LIU Y. Multi-task multi-objective deep reinforcement learning-based computation offloading method for industrial internet of things[J]. IEEE internet of things journal,2023,10(2):1848-1859.
[18]MA M,GONG C,WU L,et al. FLIRRAS:fast learning with integrated reward and reduced action space for online multitask offloading[J]. IEEE internet of things journal,2023,10(6):5406-5417.
[19]HAMMAMI N,NGUYEN K K. On-policy vs. off-policy deep reinforcement learning for resource allocation in open radio access network[C]//2022 IEEE Wireless Communications and Networking Conference(WCNC). IEEE,Austin,TX,2022:1461-1466.
[20]FILALI A,NOUR B,CHERKAOUI S,et al. Communication and computation O-RAN resource slicing for URLLC services using deep reinforcement learning[J]. IEEE communications standards magazine,2023,7(1):66-73.
[21]ZHANG H,ZHOU H,EROL-KANTARCI M. Team learning-based resource allocation for open radio access network[C]//2022 IEEE International Conference on Communications(ICC). IEEE,2022:4938-4943.