[1]高 楠,陈浩标.Gorenstein稳定范畴的粘合和等价不变量[J].南京师大学报(自然科学版),2024,(02):1-7.[doi:10.3969/j.issn.1001-4616.2024.02.001]
 Gao Nan,Chen Haobiao.Invariants Along the Recollements and Equivalences of Gorenstein Stable Categories[J].Journal of Nanjing Normal University(Natural Science Edition),2024,(02):1-7.[doi:10.3969/j.issn.1001-4616.2024.02.001]
点击复制

Gorenstein稳定范畴的粘合和等价不变量()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
期数:
2024年02期
页码:
1-7
栏目:
数学
出版日期:
2024-06-15

文章信息/Info

Title:
Invariants Along the Recollements and Equivalences of Gorenstein Stable Categories
文章编号:
1001-4616(2024)02-0001-07
作者:
高 楠陈浩标
(上海大学理学院数学系,上海 200444)
Author(s):
Gao NanChen Haobiao
(Department of Mathematics,Shanghai University,Shanghai 200444,China)
关键词:
Gorenstein投射模Gorenstein投射刚性维数Gorenstein稳定等价三角范畴的粘合
Keywords:
Gorenstein projective modulesGorenstein projecitve rigidity dimensionGorenstein stable equivalencesrecollements of triangulated categories
分类号:
O154.2
DOI:
10.3969/j.issn.1001-4616.2024.02.001
文献标志码:
A
摘要:
引入了Gorenstein投射刚性维数,以Gorenstein投射模的稳定范畴的粘合为主要工具,证明了Gorenstein投射刚性维数是Morita等价、Gorenstein稳定等价和导出等价的不变量,刻画了某些代数类的Gorenstein投射刚性维数.
Abstract:
We introduce the Gorenstein projective rigidity dimension,and show that the Gorenstein projective rigidity dimension is invariant with respect to Morita equivalences,Gorenstein stable equivalences and derived equivalences,where the recollements of the stable categories of Gorenstein projective modules are the main tool. Furthermore,we characterize the Gorenstein projective rigidity dimension of some classes of algebras.

参考文献/References:

[1]DENNIS R K,IGUSA K. Hochschild homology and the second obstruction for pseudoisotopy[C]//Algebraic K-Theory:Proceedings of a Conference Held at Oberwolfach. Berlin,Heidelberg:Springer,2006:7-58.
[2]LODAY J L. Jean-louis cyclic homology[M]. Berlin:Springer-Verlag,1992.
[3]HAPPEL D. Triangulated categories in the representation of finite dimensional algebras[M]. Cambridge:Cambridge University Press,1988.
[4]HAPPEL D. Reduction techniques for homological conjectures[J]. Tsukuba journal of mathematics,1993,17(1):115-130.
[5]KELLER B. Invariance of cyclic homology under derived equivalence,Representation theory of algebras[M]. Providence,RI:American Mathematical Society,1996.
[6]KELLER B. Derived categories and their uses[J]. Handbook of algebra,1996,1:671-701.
[7]PAN S,XI C. Finiteness of finitistic dimension is invariant under derived equivalences[J]. Journal of algebra,2009,322(1):21-24.
[8]KRAUSE H. Representation type and stable equivalence of Morita type for finite dimensional algebras[J]. Mathematische zeitschrift,1998,229:601-606.
[9]LIU Y,XI C. Constructions of stable equivalences of Morita type for finite dimensional algebras II[J]. Mathematische zeitschrift,2005,251:21-39.
[10]PAN S,ZHOU G. Stable equivalences of Morita type and stable Hochschild cohomology rings[J]. Archiv der mathematik,2010,94(6):511-518.
[11]XI C. Representation dimension and quasi-hereditary algebras[J]. Advances in mathematics,2002,168(2):193-212.
[12]ENOCHS E E,JENDA O M G. Gorenstein injective and projective modules[J]. Mathematische zeitschrift,1995,220(1):611-633.
[13]AUSLANDER M,BRIDGER M. Stable module theory[M]. Providence:American Mathematical Society,1969.
[14]ENOCHS E E,JENDA O M G. Relative homological algebra:Volume 1[M]. Berlin:Walter de Gruyter,GmbH and CO.KG,2011.
[15]GAO N,ZHANG P. Gorenstein derived categories[J]. Journal of algebra,2010,323(7):2041-2057.
[16]HAPPEL D. On gorenstein algebras[C]//Representation Theory of Finite Groups and Finite-Dimensional Algebras:Proceedings of the Conference at the University of Bielefeld from May 15-17,1991,and 7 Survey Articles on Topics of Representation Theory. Birkhäuser Basel,1991:389-404.
[17]RICKARD J. Derived equivalence as derived functors[J]. Journal of London mathematics,1991,43(2):37-48.
[18]HU W,PAN S. Stable functors of derived equivalences and Gorenstein projective modules[J]. Mathematische Nachrichten,2017,290(10):1512-1530.
[19]BEILINSON A A,DELIGNE P. Faisceaux pervers,analysis and topology on singular spaces[M]. Paris:France Mathematical Society,1982.
[20]TADASI NAKAYAMA. On algebras with complete homology[J]. Abhandlungen aus dem mathematischen seminar der universität hamburg,1958(22):300-307.
[21]TACHIKAWA H. On dominant dimensions of algebras[J]. Transactions of the American Mathematical Society,1964,112(2):249-266.
[22]TACHIKAWA H. Quasi-Frobenius Rings and Generalizations[M]. Springer Lecture Notes in Mathematics. Berlin,New York:Springer-Verlag,1973.
[23]MÜLLER B J. The classification of algebras by dominant dimension[J]. Canadian journal of mathematics,1968,20:398-409.
[24]YAMAGATA K. Frobenius algebras[M]. North-Holland,Amsterdam:Elsevier,1996:841-887.
[25]CHEN H,XI C. Dominant dimensions,derived equivalences and tilting modules[J]. Israel journal of mathematics,2016,215:349-395.
[26]CHEN H,FANG M,KERNER O,et al. Rigidity dimension of algebras[C]//Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge:Cambridge University Press,2021,170(2):417-443.
[27]GAO N,KOENIG S. Grade,dominant dimension and Gorenstein algebras[J]. Journal of algebra,2015,427:118-141.
[28]HU W,LUO X H,XIONG B L,et al. Gorenstein projective bimodules via monomorphism categories and filtration categories[J]. Journal of pure and applied algebra,2019,223(3):1014-1039.
[29]BEILINSON A A,GINSBURG V A,SCHECHTMAN V V. Koszul duality[J]. Journal of geometry and physics,1988,5(3):317-350.
[30]HÜGEL L A,KOENIG S,LIU Q,et al. Ladders and simplicity of derived module categories[J]. Journal of algebra,2017,472:15-66.
[31]GAO N,XU X. Homological epimorphisms,compactly generated t-structures and Gorenstein-projective modules[J]. Chinese annals of mathematics(Series B),2018,39:47-58.

备注/Memo

备注/Memo:
收稿日期:2023-02-23.
基金项目:国家自然科学基金资助项目(11771272、11871326、12271333).
通讯作者:高楠,博士,教授,博士生导师,研究方向:代数表示论. E-mail:nangao@shu.edu.cn
更新日期/Last Update: 2024-06-15