参考文献/References:
[1]EINFALT M,LIENHART R. Decoupling video and human motion:towards practical event detection in athlete recordings[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Virtual,2020:892-893.
[2]GIRSHICK R,DONAHUE J,DARRELL T,et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus,Ohio,USA,2014:580-587.
[3]REN S,HE K,GIRSHICK R,et al. Faster r-cnn:Towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence,2017,39(6):1137-1149.
[4]REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:Unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas,USA,2016:779-788.
[5]LIU W,ANGUELOV D,ERHAN D,et al. Ssd:Single shot multibox detector[C]//European Conference on Computer Vision. Springer,Cham,Amsterdam,Netherlands,2016:21-37.
[6]TIAN Z,SHEN C,CHEN H,et al. Fcos:Fully convolutional one-stage object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul,Korea(South),2019:9627-9636.
[7]TAN M,PANG R,LE Q V. Efficientdet:Scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Virtual,2020:10781-10790.
[8]YANG Z,LI Z,JIANG X,et al. Focal and global knowledge distillation for detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans,LA,USA,2022:4643-4652.
[9]GAO Z,WANG L,HAN B,et al. AdaMixer:A Fast-Converging Query-Based Object Detector[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans,LA,USA,2022:5364-5373.
[10]HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las,Vegas,USA,2016:770-778.
[11]SIMONYAN K,ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J/OL]. arXiv Preprint arXiv:1409.1556,2014.
[12]SZEGEDY C,IOFFE S,VANHOUCKE V,et al. Inception-v4,inception-resnet and the impact of residual connections on learning[C]//Thirty-first AAAI Conference on Artificial Intelligence. San Francisco,USA,2017:4278-4284.
[13]LIN T Y,DOLL?R P,GIRSHICK R,et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. San,Juan,USA,2017:2117-2125.
[14]LIU S,QI L,QIN H,et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City,USA,2018:8759-8768.
[15]ZHANG S,CHI C,YAO Y,et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020:9759-9768.
[16]ZHANG X,ZHOU X,LIN M,et al. Shufflenet:An extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City,USA,2018:6848-6856.
[17]WOO S,PARK J,LEE J Y,et al. Cbam:Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision(ECCV). Munich,Germany,2018:3-19.
[18]LI X,WANG W,WU L,et al. Generalized focal loss:Learning qualified and distributed bounding boxes for dense object detection[J]. Advances in neural information processing systems,2020,33:21002-21012.
[19]HU J,SHEN L,SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City,USA,2018:7132-7141.
[20]REZATOFIGHI H,TSOI N,GWAK J Y,et al. Generalized intersection over union:A metric and a loss for bounding box regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach,USA,2019:658-666.
[21]刘方坚,李媛. 基于视觉显著性的 SAR 遥感图像 NanoDet 舰船检测方法[J]. 雷达学报,2021,10(6):885-894.
相似文献/References:
[1]郑德鹏,杜吉祥,翟传敏.基于深度学习MPCANet的年龄估计[J].南京师大学报(自然科学版),2017,40(01):20.[doi:10.3969/j.issn.1001-4616.2017.01.004]
Zheng Depeng,Du Jixiang,Zhai Chuanmin.Age Estimation Based on Deep Learning MPCANet[J].Journal of Nanjing Normal University(Natural Science Edition),2017,40(02):20.[doi:10.3969/j.issn.1001-4616.2017.01.004]
[2]朱 繁,王洪元,张 继.基于深度学习的行人重识别研究综述[J].南京师大学报(自然科学版),2018,41(04):93.[doi:10.3969/j.issn.1001-4616.2018.04.015]
Zhu Fan,Wang Hongyuan,Zhang Ji.A Survey of Person Re-identification Based on Deep Learning[J].Journal of Nanjing Normal University(Natural Science Edition),2018,41(02):93.[doi:10.3969/j.issn.1001-4616.2018.04.015]
[3]孙茹君,张鲁飞.基于动态指导的深度学习模型稀疏化执行方法[J].南京师大学报(自然科学版),2019,42(03):11.[doi:10.3969/j.issn.1001-4616.2019.03.002]
Sun Rujun,Zhang Lufei.Dynamic Sparse Method for Deep Learning Execution[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(02):11.[doi:10.3969/j.issn.1001-4616.2019.03.002]
[4]赵文芳,林润生,唐 伟,等.基于深度学习的PM2.5短期预测模型[J].南京师大学报(自然科学版),2019,42(03):32.[doi:10.3969/j.issn.1001-4616.2019.03.005]
Zhao Wenfang,Lin Runsheng,Tang Wei,et al.Forecasting Model of Short-Term PM2.5 ConcentrationBased on Deep Learning[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(02):32.[doi:10.3969/j.issn.1001-4616.2019.03.005]
[5]张新峰,闫昆鹏,赵 珣.基于双向LSTM的手写文字识别技术研究[J].南京师大学报(自然科学版),2019,42(03):58.[doi:10.3969/j.issn.1001-4616.2019.03.008]
Zhang Xinfeng,Yan Kunpeng,Zhao Xun.Handwriting Chinese Text Recognition Using BiLSTM Network[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(02):58.[doi:10.3969/j.issn.1001-4616.2019.03.008]
[6]贾玉福,胡胜红,刘文平,等.使用条件生成对抗网络的自然图像增强方法[J].南京师大学报(自然科学版),2019,42(03):88.[doi:10.3969/j.issn.1001-4616.2019.03.012]
Jia Yufu,Hu Shenghong,Liu Wenping,et al.Wild Image Enhancement with Conditional Generative Adversarial Network[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(02):88.[doi:10.3969/j.issn.1001-4616.2019.03.012]
[7]汤 凯,何 庆,赵 群,等.基于改进的深度残差网络的图像识别[J].南京师大学报(自然科学版),2019,42(03):115.[doi:10.3969/j.issn.1001-4616.2019.03.015]
Tang Kai,He Qing,Zhao Qun,et al.Image Recognition Based on Improved Deep Neural Network[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(02):115.[doi:10.3969/j.issn.1001-4616.2019.03.015]
[8]汪 晨,张辉辉,乐继旺,等.基于深度学习和遥感影像的松材线虫病疫松树目标检测[J].南京师大学报(自然科学版),2021,44(03):84.[doi:10.3969/j.issn.1001-4616.2021.03.013]
Wang Chen,Zhang Huihui,Le Jiwang,et al.Object Detection to the Pine Trees Affected by Pine Wilt Diseasein Remote Sensing Images Using Deep Learning[J].Journal of Nanjing Normal University(Natural Science Edition),2021,44(02):84.[doi:10.3969/j.issn.1001-4616.2021.03.013]
[9]韩 悦,张永寿,郭依廷,等.乳腺癌腋窝淋巴结超声图像分割算法研究[J].南京师大学报(自然科学版),2021,44(04):122.[doi:10.3969/j.issn.1001-4616.2021.04.016]
Han Yue,Zhang Yongshou,Guo Yiting,et al.Research on Ultrasound Image Segmentation Algorithm forAxillary Lymph Node with Breast Cancer[J].Journal of Nanjing Normal University(Natural Science Edition),2021,44(02):122.[doi:10.3969/j.issn.1001-4616.2021.04.016]
[10]闫靖昆,黄毓贤,秦伟森,等.棉田复杂背景下棉花黄萎病病斑分割算法研究[J].南京师大学报(自然科学版),2021,44(04):127.[doi:10.3969/j.issn.1001-4616.2021.04.017]
Yan Jingkun,Huang Yuxian,Qin Weisen,et al.Study on Segmentation Algorithm of Cotton Verticillium WiltDisease Spot in Cotton Field Under Complex Background[J].Journal of Nanjing Normal University(Natural Science Edition),2021,44(02):127.[doi:10.3969/j.issn.1001-4616.2021.04.017]