参考文献/References:
[1]COX D. Regression models and life tables[J]. Journal of the Royal Statistical Society series b:statistical methodology,1972,34(2):187-220.
[2]KAPLAN E L,MEIER P. Nonparametric estimation from in-complete observations[J]. Journal of the American Statal Association,1957,53(282):457-481.
[3]AARON S D,STEPHENSON A L,CAMERON D W,et al. A statistical model to predict one-year risk of death in patients with cystic fibrosis[J]. Journal of clinical epidemiology,2015,68(11):1336-1345.
[4]FARAGGI D,SIMON R. A neural network model for survival data[J]. Statistics in Medicine,2010,14(1):73-82.
[5]ISHWARAN H,KOGALUR U B,BLACKSTONE EUGENE H,et al. Random survival forests[J]. Journal of Thoracic Oncology Official Publication of the International Association for the Study of Lung Cancer,2008,2(12):841-860.
[6]ISHWARAN H,KOGALUR U B,BLACKSTONE EUGENE H,et al. Random survival forests for R[J]. Annals of applied statistics,2007,2(3):25-31.
[7]LUCK M,SYLVAIN T,CARDINAL H,et al. Deep learning for patient-specific kidney graft survival analysis[J/OL]. arXiv Preprint arXiv:1705.10245,2017.
[8]ALAA A M,van der SCHAAR M. Deep multi-task Gaussian processes for survival analysis with competing risks[C]//31st Annual Conference on Newral Information Processing System. Long Beach,CA:NIPS,2017,30:2326-2334.
[9]CHANG LEE,WILLIAM R ZAME,JINSUNG YOON,et al. DeepHit:a deep learning approach to survival analysis with competing risks[C]//The Thirty-Second AAAI Conference on Artificial Intelligence. New Orleans,LA:AAAI,2018:2314-2321.
[10]PLSTERL S,NAVAB N,KATOUZIAN A. Fast training of support vector machines for survival analysis[C]//Machine Learning and Knowledge Discovery in Databases:European Conference,ECML PKDD. Switzerland:Springer,2015:243-259.
[11]PLSTERL S,NAVAB N,KATOUZIAN A. An efficient training algorithm for kernel survival support vector machines[J/OL]. arXiv Preprint arXiv:1611.07054,2016.
[12]PLSTERL S,GUPTA P,WANG L,et al. Heterogeneous ensembles for predicting survival of metastatic,castrate-resistant prostate cancer patients[J]. F1000research,2016,5(2676):1-29.
[13]KATZMAN J,SHAHAM U,BATES J,et al. Deep Survival:a deep cox proportional hazards network[J/OL]. arXiv Preprint arXiv:1606.00931,2016.
[14]LIU P,FU B,YANG S X,et al. Optimizing survival analysis of XGBoost for ties to predict disease progression of breast cancer[J]. IEEE transactions on biomedical engineering,2020,68(1):148-160.
[15]KATZMAN J L,SHAHAM U,CLONINGER A,et al. DeepSurv:personalized treatment recommender system using a Cox proportional hazards deep neural network[J]. BMC medical research methodology,2018,18(1):24.
[16]LIM H J,ZHANG X,DYCK R,et al. Methods of competing risks analysis of end-stage renal disease and mortality among people with diabetes[J]. BMC medical research methodology,2010,10(97):1-9.
[17]LAMBERT P C,DICKMAN P W,NELSON C P,et al. Estimating the crude probability of death due to cancer and other causes using relative survival models[J]. Statistics in medicine,2010,29(7/8):885-895.
[18]BELLOT A,SCHAAR M. Tree-based bayesian mixture model for competing risks[C]//21st International Conference on Arttfical Intelligence and Statistics Lanzarote,Spain:Microcome Publishing,2018:910-918.
[19]REN K,QIN J,ZHENG L,et al. Deep recurrent survival analysis[J]. Proceedings of the AAAI conference on artificial intelligence,2019,33:4798-4805.
[20]LIU P,FU B,YANG S X. HitBoost:survival analysis via a multi-output gradient boosting decision tree method[J]. IEEE Access,2019,7:56785-56795.
[21]RIETSCHEL C,YOON J,MIHAELA V. Feature selection for survival analysis with competing risks using deep learning[J/OL]. arXiv Preprint arXiv:1811.09317,2018.
[22]LEE C,YOON J,SCHAAR M. Dynamic-DeepHit:a deep learning approach for dynamic survival analysis with competing risks based on longitudinal data[J]. IEEE transactions on biomedical engineering,2020,67(1):122-133.
[23]COLLOBERT R,WESTON J. A unified architecture for natural language processing:deep neural networks with multitask learning[C]//Machine Learning,Proceedings of the Twenty-Fifth International Conference(ICML 2008),Helsinki,Finland:ACM,2008:160-167.
[24]HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision & Pattern Recognition. IEEE Computer Society,Piscataway,NJ:IEEE,2016:770-778.
[25]HARRELL,FRANK E. Evaluating the yield of medical tests[J]. The journal of the American Medical Association,1982,247(18):2543-2546.
[26]ANTOLINI L,BORACCHI P,BIGANZOLI E. A time-dependent dis-crimination index for survival data[J]. Statistics in medicine,2005,24(24):3927-3944.
[27]KVAMME H,BORGAN R,SCHEEL I. Time-to-event prediction with neural networks and cox regression[J]. Journal of machine learning research,2019,20(129):1-30.
[28]KVAMME H,BORGAN R. Continuous and discrete-time survival prediction with neural networks[J/OL]. arXiv Preprint arXiv:1910.06724,2019.
相似文献/References:
[1]郑德鹏,杜吉祥,翟传敏.基于深度学习MPCANet的年龄估计[J].南京师大学报(自然科学版),2017,40(01):20.[doi:10.3969/j.issn.1001-4616.2017.01.004]
Zheng Depeng,Du Jixiang,Zhai Chuanmin.Age Estimation Based on Deep Learning MPCANet[J].Journal of Nanjing Normal University(Natural Science Edition),2017,40(03):20.[doi:10.3969/j.issn.1001-4616.2017.01.004]
[2]朱 繁,王洪元,张 继.基于深度学习的行人重识别研究综述[J].南京师大学报(自然科学版),2018,41(04):93.[doi:10.3969/j.issn.1001-4616.2018.04.015]
Zhu Fan,Wang Hongyuan,Zhang Ji.A Survey of Person Re-identification Based on Deep Learning[J].Journal of Nanjing Normal University(Natural Science Edition),2018,41(03):93.[doi:10.3969/j.issn.1001-4616.2018.04.015]
[3]孙茹君,张鲁飞.基于动态指导的深度学习模型稀疏化执行方法[J].南京师大学报(自然科学版),2019,42(03):11.[doi:10.3969/j.issn.1001-4616.2019.03.002]
Sun Rujun,Zhang Lufei.Dynamic Sparse Method for Deep Learning Execution[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(03):11.[doi:10.3969/j.issn.1001-4616.2019.03.002]
[4]赵文芳,林润生,唐 伟,等.基于深度学习的PM2.5短期预测模型[J].南京师大学报(自然科学版),2019,42(03):32.[doi:10.3969/j.issn.1001-4616.2019.03.005]
Zhao Wenfang,Lin Runsheng,Tang Wei,et al.Forecasting Model of Short-Term PM2.5 ConcentrationBased on Deep Learning[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(03):32.[doi:10.3969/j.issn.1001-4616.2019.03.005]
[5]张新峰,闫昆鹏,赵 珣.基于双向LSTM的手写文字识别技术研究[J].南京师大学报(自然科学版),2019,42(03):58.[doi:10.3969/j.issn.1001-4616.2019.03.008]
Zhang Xinfeng,Yan Kunpeng,Zhao Xun.Handwriting Chinese Text Recognition Using BiLSTM Network[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(03):58.[doi:10.3969/j.issn.1001-4616.2019.03.008]
[6]贾玉福,胡胜红,刘文平,等.使用条件生成对抗网络的自然图像增强方法[J].南京师大学报(自然科学版),2019,42(03):88.[doi:10.3969/j.issn.1001-4616.2019.03.012]
Jia Yufu,Hu Shenghong,Liu Wenping,et al.Wild Image Enhancement with Conditional Generative Adversarial Network[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(03):88.[doi:10.3969/j.issn.1001-4616.2019.03.012]
[7]汤 凯,何 庆,赵 群,等.基于改进的深度残差网络的图像识别[J].南京师大学报(自然科学版),2019,42(03):115.[doi:10.3969/j.issn.1001-4616.2019.03.015]
Tang Kai,He Qing,Zhao Qun,et al.Image Recognition Based on Improved Deep Neural Network[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(03):115.[doi:10.3969/j.issn.1001-4616.2019.03.015]
[8]汪 晨,张辉辉,乐继旺,等.基于深度学习和遥感影像的松材线虫病疫松树目标检测[J].南京师大学报(自然科学版),2021,44(03):84.[doi:10.3969/j.issn.1001-4616.2021.03.013]
Wang Chen,Zhang Huihui,Le Jiwang,et al.Object Detection to the Pine Trees Affected by Pine Wilt Diseasein Remote Sensing Images Using Deep Learning[J].Journal of Nanjing Normal University(Natural Science Edition),2021,44(03):84.[doi:10.3969/j.issn.1001-4616.2021.03.013]
[9]肖叶宇,张 闪.基于随机生存森林的企业财务危机研究[J].南京师大学报(自然科学版),2021,44(04):1.[doi:10.3969/j.issn.1001-4616.2021.04.001]
Xiao Yeyu,Zhang Shan.Research on Financial Crisis of Enterprises Based on Random Survival Forest[J].Journal of Nanjing Normal University(Natural Science Edition),2021,44(03):1.[doi:10.3969/j.issn.1001-4616.2021.04.001]
[10]韩 悦,张永寿,郭依廷,等.乳腺癌腋窝淋巴结超声图像分割算法研究[J].南京师大学报(自然科学版),2021,44(04):122.[doi:10.3969/j.issn.1001-4616.2021.04.016]
Han Yue,Zhang Yongshou,Guo Yiting,et al.Research on Ultrasound Image Segmentation Algorithm forAxillary Lymph Node with Breast Cancer[J].Journal of Nanjing Normal University(Natural Science Edition),2021,44(03):122.[doi:10.3969/j.issn.1001-4616.2021.04.016]